MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndif Structured version   Visualization version   Unicode version

Theorem psgndif 19948
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
psgndif.p  |-  P  =  ( Base `  ( SymGrp `
 N ) )
psgndif.s  |-  S  =  (pmSgn `  N )
psgndif.z  |-  Z  =  (pmSgn `  ( N  \  { K } ) )
Assertion
Ref Expression
psgndif  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }  ->  ( Z `  ( Q  |`  ( N  \  { K } ) ) )  =  ( S `
 Q ) ) )
Distinct variable groups:    K, q    P, q    Q, q
Allowed substitution hints:    S( q)    N( q)    Z( q)

Proof of Theorem psgndif
Dummy variables  r 
s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgndif.p . . . . . . . . . . 11  |-  P  =  ( Base `  ( SymGrp `
 N ) )
2 eqid 2622 . . . . . . . . . . 11  |-  ran  (pmTrsp `  ( N  \  { K } ) )  =  ran  (pmTrsp `  ( N  \  { K }
) )
3 eqid 2622 . . . . . . . . . . 11  |-  ( SymGrp `  ( N  \  { K } ) )  =  ( SymGrp `  ( N  \  { K } ) )
4 eqid 2622 . . . . . . . . . . 11  |-  ( SymGrp `  N )  =  (
SymGrp `  N )
5 eqid 2622 . . . . . . . . . . 11  |-  ran  (pmTrsp `  N )  =  ran  (pmTrsp `  N )
61, 2, 3, 4, 5psgnfix2 19945 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }  ->  E. r  e. Word  ran  (pmTrsp `  N ) Q  =  ( ( SymGrp `  N )  gsumg  r ) ) )
76imp 445 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  E. r  e. Word  ran  (pmTrsp `  N
) Q  =  ( ( SymGrp `  N )  gsumg  r ) )
87ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) )  /\  ( ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  ->  E. r  e. Word  ran  (pmTrsp `  N ) Q  =  ( ( SymGrp `  N )  gsumg  r ) )
91, 2, 3, 4, 5psgndiflemA 19947 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( (
w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) )  /\  ( Q  |`  ( N 
\  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  /\  r  e. Word  ran  (pmTrsp `  N
) )  ->  ( Q  =  ( ( SymGrp `
 N )  gsumg  r )  ->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 r ) ) ) ) )
109imp 445 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  (
w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) )  /\  ( Q  |`  ( N 
\  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  /\  r  e. Word  ran  (pmTrsp `  N
) ) )  -> 
( Q  =  ( ( SymGrp `  N )  gsumg  r )  ->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 r ) ) ) )
11103anassrs 1290 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )  /\  r  e. Word  ran  (pmTrsp `  N ) )  -> 
( Q  =  ( ( SymGrp `  N )  gsumg  r )  ->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 r ) ) ) )
1211adantlrr 757 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( ( Q  |`  ( N  \  { K } ) )  =  ( (
SymGrp `  ( N  \  { K } ) ) 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  /\  r  e. Word  ran  (pmTrsp `  N ) )  ->  ( Q  =  ( ( SymGrp `  N
)  gsumg  r )  ->  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  r
) ) ) )
13 eqeq1 2626 . . . . . . . . . . . 12  |-  ( s  =  ( -u 1 ^ ( # `  w
) )  ->  (
s  =  ( -u
1 ^ ( # `  r ) )  <->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 r ) ) ) )
1413ad2antll 765 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) )  /\  ( ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  ->  ( s  =  ( -u 1 ^ ( # `  r
) )  <->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 r ) ) ) )
1514adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( ( Q  |`  ( N  \  { K } ) )  =  ( (
SymGrp `  ( N  \  { K } ) ) 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  /\  r  e. Word  ran  (pmTrsp `  N ) )  ->  ( s  =  ( -u 1 ^ ( # `  r
) )  <->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 r ) ) ) )
1612, 15sylibrd 249 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( ( Q  |`  ( N  \  { K } ) )  =  ( (
SymGrp `  ( N  \  { K } ) ) 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  /\  r  e. Word  ran  (pmTrsp `  N ) )  ->  ( Q  =  ( ( SymGrp `  N
)  gsumg  r )  ->  s  =  ( -u 1 ^ ( # `  r
) ) ) )
1716ralrimiva 2966 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) )  /\  ( ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  ->  A. r  e. Word  ran  (pmTrsp `  N ) ( Q  =  ( (
SymGrp `  N )  gsumg  r )  ->  s  =  (
-u 1 ^ ( # `
 r ) ) ) )
188, 17r19.29imd 3074 . . . . . . 7  |-  ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) )  /\  ( ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  ->  E. r  e. Word  ran  (pmTrsp `  N ) ( Q  =  ( (
SymGrp `  N )  gsumg  r )  /\  s  =  (
-u 1 ^ ( # `
 r ) ) ) )
1918ex 450 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) )  -> 
( ( ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  ->  E. r  e. Word  ran  (pmTrsp `  N ) ( Q  =  ( ( SymGrp `  N )  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) ) ) )
2019rexlimdva 3031 . . . . 5  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( E. w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) ( ( Q  |`  ( N  \  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  ->  E. r  e. Word  ran  (pmTrsp `  N ) ( Q  =  ( ( SymGrp `  N )  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) ) ) )
211, 2, 3psgnfix1 19944 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }  ->  E. w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) ( Q  |`  ( N  \  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w ) ) )
2221imp 445 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  E. w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )
2322ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N
) )  /\  ( Q  =  ( ( SymGrp `
 N )  gsumg  r )  /\  s  =  (
-u 1 ^ ( # `
 r ) ) ) )  ->  E. w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )
24 simp-4l 806 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  /\  r  e. Word  ran  (pmTrsp `  N )
)  /\  Q  =  ( ( SymGrp `  N
)  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )  -> 
( ( N  e. 
Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } ) )
25 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N ) )  /\  Q  =  ( ( SymGrp `  N )  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) )  ->  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )
2625adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  /\  r  e. Word  ran  (pmTrsp `  N )
)  /\  Q  =  ( ( SymGrp `  N
)  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )  ->  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )
27 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  /\  r  e. Word  ran  (pmTrsp `  N )
)  /\  Q  =  ( ( SymGrp `  N
)  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )  -> 
( Q  |`  ( N  \  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w ) )
28 simp-4r 807 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  /\  r  e. Word  ran  (pmTrsp `  N )
)  /\  Q  =  ( ( SymGrp `  N
)  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )  -> 
r  e. Word  ran  (pmTrsp `  N ) )
2926, 27, 283jca 1242 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  /\  r  e. Word  ran  (pmTrsp `  N )
)  /\  Q  =  ( ( SymGrp `  N
)  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )  -> 
( w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w )  /\  r  e. Word  ran  (pmTrsp `  N
) ) )
30 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N
) )  /\  Q  =  ( ( SymGrp `  N )  gsumg  r ) )  ->  Q  =  ( ( SymGrp `
 N )  gsumg  r ) )
3130ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  /\  r  e. Word  ran  (pmTrsp `  N )
)  /\  Q  =  ( ( SymGrp `  N
)  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )  ->  Q  =  ( ( SymGrp `
 N )  gsumg  r ) )
3224, 29, 31, 9syl3c 66 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  /\  r  e. Word  ran  (pmTrsp `  N )
)  /\  Q  =  ( ( SymGrp `  N
)  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )  -> 
( -u 1 ^ ( # `
 w ) )  =  ( -u 1 ^ ( # `  r
) ) )
3332eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  /\  r  e. Word  ran  (pmTrsp `  N )
)  /\  Q  =  ( ( SymGrp `  N
)  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  /\  ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w ) )  -> 
( -u 1 ^ ( # `
 r ) )  =  ( -u 1 ^ ( # `  w
) ) )
3433ex 450 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N ) )  /\  Q  =  ( ( SymGrp `  N )  gsumg  r ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) )  -> 
( ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w )  ->  ( -u 1 ^ ( # `  r ) )  =  ( -u 1 ^ ( # `  w
) ) ) )
3534adantlrr 757 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N ) )  /\  ( Q  =  ( ( SymGrp `  N
)  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  ->  ( ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  ->  ( -u 1 ^ ( # `  r
) )  =  (
-u 1 ^ ( # `
 w ) ) ) )
36 eqeq1 2626 . . . . . . . . . . . 12  |-  ( s  =  ( -u 1 ^ ( # `  r
) )  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  ( -u 1 ^ ( # `  r
) )  =  (
-u 1 ^ ( # `
 w ) ) ) )
3736ad2antll 765 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N
) )  /\  ( Q  =  ( ( SymGrp `
 N )  gsumg  r )  /\  s  =  (
-u 1 ^ ( # `
 r ) ) ) )  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  ( -u 1 ^ ( # `  r
) )  =  (
-u 1 ^ ( # `
 w ) ) ) )
3837adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N ) )  /\  ( Q  =  ( ( SymGrp `  N
)  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  ->  ( s  =  ( -u 1 ^ ( # `  w
) )  <->  ( -u 1 ^ ( # `  r
) )  =  (
-u 1 ^ ( # `
 w ) ) ) )
3935, 38sylibrd 249 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N ) )  /\  ( Q  =  ( ( SymGrp `  N
)  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) ) )  /\  w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) )  ->  ( ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  ->  s  =  (
-u 1 ^ ( # `
 w ) ) ) )
4039ralrimiva 2966 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N
) )  /\  ( Q  =  ( ( SymGrp `
 N )  gsumg  r )  /\  s  =  (
-u 1 ^ ( # `
 r ) ) ) )  ->  A. w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) ( ( Q  |`  ( N  \  { K } ) )  =  ( (
SymGrp `  ( N  \  { K } ) ) 
gsumg  w )  ->  s  =  ( -u 1 ^ ( # `  w
) ) ) )
4123, 40r19.29imd 3074 . . . . . . 7  |-  ( ( ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N
) )  /\  ( Q  =  ( ( SymGrp `
 N )  gsumg  r )  /\  s  =  (
-u 1 ^ ( # `
 r ) ) ) )  ->  E. w  e. Word  ran  (pmTrsp `  ( N  \  { K }
) ) ( ( Q  |`  ( N  \  { K } ) )  =  ( (
SymGrp `  ( N  \  { K } ) ) 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
4241ex 450 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  K  e.  N )  /\  Q  e.  { q  e.  P  |  ( q `  K )  =  K } )  /\  r  e. Word  ran  (pmTrsp `  N
) )  ->  (
( Q  =  ( ( SymGrp `  N )  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) )  ->  E. w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) ( ( Q  |`  ( N  \  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
4342rexlimdva 3031 . . . . 5  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( E. r  e. Word  ran  (pmTrsp `  N ) ( Q  =  ( ( SymGrp `  N )  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) )  ->  E. w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) ( ( Q  |`  ( N  \  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
4420, 43impbid 202 . . . 4  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( E. w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) ( ( Q  |`  ( N  \  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. r  e. Word  ran  (pmTrsp `  N
) ( Q  =  ( ( SymGrp `  N
)  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) ) ) )
4544iotabidv 5872 . . 3  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( iota s E. w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) ( ( Q  |`  ( N  \  { K } ) )  =  ( ( SymGrp `  ( N  \  { K }
) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  =  ( iota s E. r  e. Word  ran  (pmTrsp `  N ) ( Q  =  ( ( SymGrp `  N )  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) ) ) )
46 diffi 8192 . . . . 5  |-  ( N  e.  Fin  ->  ( N  \  { K }
)  e.  Fin )
4746ad2antrr 762 . . . 4  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( N  \  { K } )  e.  Fin )
48 eqid 2622 . . . . . 6  |-  { q  e.  P  |  ( q `  K )  =  K }  =  { q  e.  P  |  ( q `  K )  =  K }
49 eqid 2622 . . . . . 6  |-  ( Base `  ( SymGrp `  ( N  \  { K } ) ) )  =  (
Base `  ( SymGrp `  ( N  \  { K } ) ) )
50 eqid 2622 . . . . . 6  |-  ( N 
\  { K }
)  =  ( N 
\  { K }
)
511, 48, 49, 50symgfixelsi 17855 . . . . 5  |-  ( ( K  e.  N  /\  Q  e.  { q  e.  P  |  (
q `  K )  =  K } )  -> 
( Q  |`  ( N  \  { K }
) )  e.  (
Base `  ( SymGrp `  ( N  \  { K } ) ) ) )
5251adantll 750 . . . 4  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( Q  |`  ( N  \  { K } ) )  e.  ( Base `  ( SymGrp `
 ( N  \  { K } ) ) ) )
53 psgndif.z . . . . 5  |-  Z  =  (pmSgn `  ( N  \  { K } ) )
543, 49, 2, 53psgnvalfi 17934 . . . 4  |-  ( ( ( N  \  { K } )  e.  Fin  /\  ( Q  |`  ( N  \  { K }
) )  e.  (
Base `  ( SymGrp `  ( N  \  { K } ) ) ) )  ->  ( Z `  ( Q  |`  ( N  \  { K }
) ) )  =  ( iota s E. w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) ( ( Q  |`  ( N  \  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
5547, 52, 54syl2anc 693 . . 3  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( Z `  ( Q  |`  ( N  \  { K }
) ) )  =  ( iota s E. w  e. Word  ran  (pmTrsp `  ( N  \  { K } ) ) ( ( Q  |`  ( N  \  { K }
) )  =  ( ( SymGrp `  ( N  \  { K } ) )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
56 simpl 473 . . . 4  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  N  e.  Fin )
57 elrabi 3359 . . . 4  |-  ( Q  e.  { q  e.  P  |  ( q `
 K )  =  K }  ->  Q  e.  P )
58 psgndif.s . . . . 5  |-  S  =  (pmSgn `  N )
594, 1, 5, 58psgnvalfi 17934 . . . 4  |-  ( ( N  e.  Fin  /\  Q  e.  P )  ->  ( S `  Q
)  =  ( iota s E. r  e. Word  ran  (pmTrsp `  N )
( Q  =  ( ( SymGrp `  N )  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) ) ) )
6056, 57, 59syl2an 494 . . 3  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( S `  Q )  =  ( iota s E. r  e. Word  ran  (pmTrsp `  N
) ( Q  =  ( ( SymGrp `  N
)  gsumg  r )  /\  s  =  ( -u 1 ^ ( # `  r
) ) ) ) )
6145, 55, 603eqtr4d 2666 . 2  |-  ( ( ( N  e.  Fin  /\  K  e.  N )  /\  Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }
)  ->  ( Z `  ( Q  |`  ( N  \  { K }
) ) )  =  ( S `  Q
) )
6261ex 450 1  |-  ( ( N  e.  Fin  /\  K  e.  N )  ->  ( Q  e.  {
q  e.  P  | 
( q `  K
)  =  K }  ->  ( Z `  ( Q  |`  ( N  \  { K } ) ) )  =  ( S `
 Q ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    \ cdif 3571   {csn 4177   ran crn 5115    |` cres 5116   iotacio 5849   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937   -ucneg 10267   ^cexp 12860   #chash 13117  Word cword 13291   Basecbs 15857    gsumg cgsu 16101   SymGrpcsymg 17797  pmTrspcpmtr 17861  pmSgncpsgn 17909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911
This theorem is referenced by:  zrhcopsgndif  19949
  Copyright terms: Public domain W3C validator