MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineineq Structured version   Visualization version   Unicode version

Theorem tglineineq 25538
Description: Two distinct lines intersect in at most one point, variation. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p  |-  P  =  ( Base `  G
)
tglineintmo.i  |-  I  =  (Itv `  G )
tglineintmo.l  |-  L  =  (LineG `  G )
tglineintmo.g  |-  ( ph  ->  G  e. TarskiG )
tglineintmo.a  |-  ( ph  ->  A  e.  ran  L
)
tglineintmo.b  |-  ( ph  ->  B  e.  ran  L
)
tglineintmo.c  |-  ( ph  ->  A  =/=  B )
tglineineq.x  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
tglineineq.y  |-  ( ph  ->  Y  e.  ( A  i^i  B ) )
Assertion
Ref Expression
tglineineq  |-  ( ph  ->  X  =  Y )

Proof of Theorem tglineineq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tglineineq.x . 2  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
2 tglineineq.y . 2  |-  ( ph  ->  Y  e.  ( A  i^i  B ) )
3 tglineintmo.p . . 3  |-  P  =  ( Base `  G
)
4 tglineintmo.i . . 3  |-  I  =  (Itv `  G )
5 tglineintmo.l . . 3  |-  L  =  (LineG `  G )
6 tglineintmo.g . . 3  |-  ( ph  ->  G  e. TarskiG )
7 tglineintmo.a . . 3  |-  ( ph  ->  A  e.  ran  L
)
8 tglineintmo.b . . 3  |-  ( ph  ->  B  e.  ran  L
)
9 tglineintmo.c . . 3  |-  ( ph  ->  A  =/=  B )
103, 4, 5, 6, 7, 8, 9tglineintmo 25537 . 2  |-  ( ph  ->  E* x ( x  e.  A  /\  x  e.  B ) )
11 elin 3796 . . 3  |-  ( X  e.  ( A  i^i  B )  <->  ( X  e.  A  /\  X  e.  B ) )
121, 11sylib 208 . 2  |-  ( ph  ->  ( X  e.  A  /\  X  e.  B
) )
13 elin 3796 . . 3  |-  ( Y  e.  ( A  i^i  B )  <->  ( Y  e.  A  /\  Y  e.  B ) )
142, 13sylib 208 . 2  |-  ( ph  ->  ( Y  e.  A  /\  Y  e.  B
) )
15 eleq1 2689 . . . 4  |-  ( x  =  X  ->  (
x  e.  A  <->  X  e.  A ) )
16 eleq1 2689 . . . 4  |-  ( x  =  X  ->  (
x  e.  B  <->  X  e.  B ) )
1715, 16anbi12d 747 . . 3  |-  ( x  =  X  ->  (
( x  e.  A  /\  x  e.  B
)  <->  ( X  e.  A  /\  X  e.  B ) ) )
18 eleq1 2689 . . . 4  |-  ( x  =  Y  ->  (
x  e.  A  <->  Y  e.  A ) )
19 eleq1 2689 . . . 4  |-  ( x  =  Y  ->  (
x  e.  B  <->  Y  e.  B ) )
2018, 19anbi12d 747 . . 3  |-  ( x  =  Y  ->  (
( x  e.  A  /\  x  e.  B
)  <->  ( Y  e.  A  /\  Y  e.  B ) ) )
2117, 20moi 3389 . 2  |-  ( ( ( X  e.  ( A  i^i  B )  /\  Y  e.  ( A  i^i  B ) )  /\  E* x
( x  e.  A  /\  x  e.  B
)  /\  ( ( X  e.  A  /\  X  e.  B )  /\  ( Y  e.  A  /\  Y  e.  B
) ) )  ->  X  =  Y )
221, 2, 10, 12, 14, 21syl212anc 1336 1  |-  ( ph  ->  X  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E*wmo 2471    =/= wne 2794    i^i cin 3573   ran crn 5115   ` cfv 5888   Basecbs 15857  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406
This theorem is referenced by:  isperp2  25610  footne  25615  lnopp2hpgb  25655  colopp  25661  lmieu  25676
  Copyright terms: Public domain W3C validator