MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopyeu Structured version   Visualization version   Unicode version

Theorem trgcopyeu 25698
Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: uniqueness part. Second part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p  |-  P  =  ( Base `  G
)
trgcopy.m  |-  .-  =  ( dist `  G )
trgcopy.i  |-  I  =  (Itv `  G )
trgcopy.l  |-  L  =  (LineG `  G )
trgcopy.k  |-  K  =  (hlG `  G )
trgcopy.g  |-  ( ph  ->  G  e. TarskiG )
trgcopy.a  |-  ( ph  ->  A  e.  P )
trgcopy.b  |-  ( ph  ->  B  e.  P )
trgcopy.c  |-  ( ph  ->  C  e.  P )
trgcopy.d  |-  ( ph  ->  D  e.  P )
trgcopy.e  |-  ( ph  ->  E  e.  P )
trgcopy.f  |-  ( ph  ->  F  e.  P )
trgcopy.1  |-  ( ph  ->  -.  ( A  e.  ( B L C )  \/  B  =  C ) )
trgcopy.2  |-  ( ph  ->  -.  ( D  e.  ( E L F )  \/  E  =  F ) )
trgcopy.3  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
Assertion
Ref Expression
trgcopyeu  |-  ( ph  ->  E! f  e.  P  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )
Distinct variable groups:    .- , f    A, f    B, f    C, f    D, f    f, E    f, F    f, G    f, I    f, L    P, f    ph, f    f, K

Proof of Theorem trgcopyeu
Dummy variables  a 
b  k  t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcopy.p . . 3  |-  P  =  ( Base `  G
)
2 trgcopy.m . . 3  |-  .-  =  ( dist `  G )
3 trgcopy.i . . 3  |-  I  =  (Itv `  G )
4 trgcopy.l . . 3  |-  L  =  (LineG `  G )
5 trgcopy.k . . 3  |-  K  =  (hlG `  G )
6 trgcopy.g . . 3  |-  ( ph  ->  G  e. TarskiG )
7 trgcopy.a . . 3  |-  ( ph  ->  A  e.  P )
8 trgcopy.b . . 3  |-  ( ph  ->  B  e.  P )
9 trgcopy.c . . 3  |-  ( ph  ->  C  e.  P )
10 trgcopy.d . . 3  |-  ( ph  ->  D  e.  P )
11 trgcopy.e . . 3  |-  ( ph  ->  E  e.  P )
12 trgcopy.f . . 3  |-  ( ph  ->  F  e.  P )
13 trgcopy.1 . . 3  |-  ( ph  ->  -.  ( A  e.  ( B L C )  \/  B  =  C ) )
14 trgcopy.2 . . 3  |-  ( ph  ->  -.  ( D  e.  ( E L F )  \/  E  =  F ) )
15 trgcopy.3 . . 3  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15trgcopy 25696 . 2  |-  ( ph  ->  E. f  e.  P  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )
176ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  G  e. TarskiG )
187ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  A  e.  P )
198ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  B  e.  P )
209ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  C  e.  P )
2110ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  D  e.  P )
2211ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  E  e.  P )
2312ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  F  e.  P )
2413ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  -.  ( A  e.  ( B L C )  \/  B  =  C ) )
2514ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  -.  ( D  e.  ( E L F )  \/  E  =  F ) )
2615ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  -> 
( A  .-  B
)  =  ( D 
.-  E ) )
27 simpl 473 . . . . . . . . . . . 12  |-  ( ( x  =  a  /\  y  =  b )  ->  x  =  a )
2827eleq1d 2686 . . . . . . . . . . 11  |-  ( ( x  =  a  /\  y  =  b )  ->  ( x  e.  ( P  \  ( D L E ) )  <-> 
a  e.  ( P 
\  ( D L E ) ) ) )
29 simpr 477 . . . . . . . . . . . 12  |-  ( ( x  =  a  /\  y  =  b )  ->  y  =  b )
3029eleq1d 2686 . . . . . . . . . . 11  |-  ( ( x  =  a  /\  y  =  b )  ->  ( y  e.  ( P  \  ( D L E ) )  <-> 
b  e.  ( P 
\  ( D L E ) ) ) )
3128, 30anbi12d 747 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( x  e.  ( P  \  ( D L E ) )  /\  y  e.  ( P  \  ( D L E ) ) )  <->  ( a  e.  ( P  \  ( D L E ) )  /\  b  e.  ( P  \  ( D L E ) ) ) ) )
32 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( x  =  a  /\  y  =  b )  /\  z  =  t )  ->  z  =  t )
33 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( x  =  a  /\  y  =  b )  /\  z  =  t )  ->  x  =  a )
34 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( x  =  a  /\  y  =  b )  /\  z  =  t )  ->  y  =  b )
3533, 34oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( x  =  a  /\  y  =  b )  /\  z  =  t )  ->  (
x I y )  =  ( a I b ) )
3632, 35eleq12d 2695 . . . . . . . . . . 11  |-  ( ( ( x  =  a  /\  y  =  b )  /\  z  =  t )  ->  (
z  e.  ( x I y )  <->  t  e.  ( a I b ) ) )
3736cbvrexdva 3178 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( E. z  e.  ( D L E ) z  e.  ( x I y )  <->  E. t  e.  ( D L E ) t  e.  ( a I b ) ) )
3831, 37anbi12d 747 . . . . . . . . 9  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( ( x  e.  ( P  \ 
( D L E ) )  /\  y  e.  ( P  \  ( D L E ) ) )  /\  E. z  e.  ( D L E ) z  e.  ( x I y ) )  <->  ( ( a  e.  ( P  \ 
( D L E ) )  /\  b  e.  ( P  \  ( D L E ) ) )  /\  E. t  e.  ( D L E ) t  e.  ( a I b ) ) ) )
3938cbvopabv 4722 . . . . . . . 8  |-  { <. x ,  y >.  |  ( ( x  e.  ( P  \  ( D L E ) )  /\  y  e.  ( P  \  ( D L E ) ) )  /\  E. z  e.  ( D L E ) z  e.  ( x I y ) ) }  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \ 
( D L E ) )  /\  b  e.  ( P  \  ( D L E ) ) )  /\  E. t  e.  ( D L E ) t  e.  ( a I b ) ) }
40 simp-5r 809 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  -> 
f  e.  P )
41 simp-4r 807 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  -> 
k  e.  P )
42 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  -> 
( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )
4342simpld 475 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  <" A B C "> (cgrG `  G ) <" D E f "> )
44 simplr 792 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  ->  <" A B C "> (cgrG `  G ) <" D E k "> )
4542simprd 479 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  -> 
f ( (hpG `  G ) `  ( D L E ) ) F )
46 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  -> 
k ( (hpG `  G ) `  ( D L E ) ) F )
471, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 39, 40, 41, 43, 44, 45, 46trgcopyeulem 25697 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  f  e.  P )  /\  k  e.  P )  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )  /\  <" A B C "> (cgrG `  G ) <" D E k "> )  /\  k ( (hpG
`  G ) `  ( D L E ) ) F )  -> 
f  =  k )
4847anasss 679 . . . . . 6  |-  ( ( ( ( ( ph  /\  f  e.  P )  /\  k  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f
( (hpG `  G
) `  ( D L E ) ) F ) )  /\  ( <" A B C "> (cgrG `  G ) <" D E k ">  /\  k ( (hpG `  G ) `  ( D L E ) ) F ) )  -> 
f  =  k )
4948anasss 679 . . . . 5  |-  ( ( ( ( ph  /\  f  e.  P )  /\  k  e.  P
)  /\  ( ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F )  /\  ( <" A B C "> (cgrG `  G ) <" D E k ">  /\  k ( (hpG `  G ) `  ( D L E ) ) F ) ) )  ->  f  =  k )
5049ex 450 . . . 4  |-  ( ( ( ph  /\  f  e.  P )  /\  k  e.  P )  ->  (
( ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F )  /\  ( <" A B C "> (cgrG `  G ) <" D E k ">  /\  k ( (hpG `  G ) `  ( D L E ) ) F ) )  -> 
f  =  k ) )
5150anasss 679 . . 3  |-  ( (
ph  /\  ( f  e.  P  /\  k  e.  P ) )  -> 
( ( ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F )  /\  ( <" A B C "> (cgrG `  G ) <" D E k ">  /\  k ( (hpG `  G ) `  ( D L E ) ) F ) )  -> 
f  =  k ) )
5251ralrimivva 2971 . 2  |-  ( ph  ->  A. f  e.  P  A. k  e.  P  ( ( ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F )  /\  ( <" A B C "> (cgrG `  G ) <" D E k ">  /\  k ( (hpG `  G ) `  ( D L E ) ) F ) )  -> 
f  =  k ) )
53 eqidd 2623 . . . . . 6  |-  ( f  =  k  ->  D  =  D )
54 eqidd 2623 . . . . . 6  |-  ( f  =  k  ->  E  =  E )
55 id 22 . . . . . 6  |-  ( f  =  k  ->  f  =  k )
5653, 54, 55s3eqd 13609 . . . . 5  |-  ( f  =  k  ->  <" D E f ">  =  <" D E k "> )
5756breq2d 4665 . . . 4  |-  ( f  =  k  ->  ( <" A B C "> (cgrG `  G ) <" D E f ">  <->  <" A B C "> (cgrG `  G ) <" D E k "> ) )
58 breq1 4656 . . . 4  |-  ( f  =  k  ->  (
f ( (hpG `  G ) `  ( D L E ) ) F  <->  k ( (hpG
`  G ) `  ( D L E ) ) F ) )
5957, 58anbi12d 747 . . 3  |-  ( f  =  k  ->  (
( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F )  <->  ( <" A B C "> (cgrG `  G ) <" D E k ">  /\  k
( (hpG `  G
) `  ( D L E ) ) F ) ) )
6059reu4 3400 . 2  |-  ( E! f  e.  P  (
<" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F )  <->  ( E. f  e.  P  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F )  /\  A. f  e.  P  A. k  e.  P  (
( ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F )  /\  ( <" A B C "> (cgrG `  G ) <" D E k ">  /\  k ( (hpG `  G ) `  ( D L E ) ) F ) )  -> 
f  =  k ) ) )
6116, 52, 60sylanbrc 698 1  |-  ( ph  ->  E! f  e.  P  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914    \ cdif 3571   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  hlGchlg 25495  hpGchpg 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-ismt 25428  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591  df-hpg 25650  df-mid 25666  df-lmi 25667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator