| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2adedgwlk | Structured version Visualization version Unicode version | ||
| Description: In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 29-Jan-2021.) |
| Ref | Expression |
|---|---|
| umgr2adedgwlk.e |
|
| umgr2adedgwlk.i |
|
| umgr2adedgwlk.f |
|
| umgr2adedgwlk.p |
|
| umgr2adedgwlk.g |
|
| umgr2adedgwlk.a |
|
| umgr2adedgwlk.j |
|
| umgr2adedgwlk.k |
|
| Ref | Expression |
|---|---|
| umgr2adedgwlk |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2adedgwlk.p |
. . 3
| |
| 2 | umgr2adedgwlk.f |
. . 3
| |
| 3 | umgr2adedgwlk.g |
. . . . . 6
| |
| 4 | umgr2adedgwlk.a |
. . . . . 6
| |
| 5 | 3anass 1042 |
. . . . . 6
| |
| 6 | 3, 4, 5 | sylanbrc 698 |
. . . . 5
|
| 7 | umgr2adedgwlk.e |
. . . . . 6
| |
| 8 | 7 | umgr2adedgwlklem 26840 |
. . . . 5
|
| 9 | 6, 8 | syl 17 |
. . . 4
|
| 10 | 9 | simprd 479 |
. . 3
|
| 11 | 9 | simpld 475 |
. . 3
|
| 12 | ssid 3624 |
. . . . 5
| |
| 13 | umgr2adedgwlk.j |
. . . . 5
| |
| 14 | 12, 13 | syl5sseqr 3654 |
. . . 4
|
| 15 | ssid 3624 |
. . . . 5
| |
| 16 | umgr2adedgwlk.k |
. . . . 5
| |
| 17 | 15, 16 | syl5sseqr 3654 |
. . . 4
|
| 18 | 14, 17 | jca 554 |
. . 3
|
| 19 | eqid 2622 |
. . 3
| |
| 20 | umgr2adedgwlk.i |
. . 3
| |
| 21 | 1, 2, 10, 11, 18, 19, 20 | 2wlkd 26832 |
. 2
|
| 22 | 2 | fveq2i 6194 |
. . . 4
|
| 23 | s2len 13634 |
. . . 4
| |
| 24 | 22, 23 | eqtri 2644 |
. . 3
|
| 25 | 24 | a1i 11 |
. 2
|
| 26 | s3fv0 13636 |
. . . . 5
| |
| 27 | s3fv1 13637 |
. . . . 5
| |
| 28 | s3fv2 13638 |
. . . . 5
| |
| 29 | 26, 27, 28 | 3anim123i 1247 |
. . . 4
|
| 30 | 10, 29 | syl 17 |
. . 3
|
| 31 | 1 | fveq1i 6192 |
. . . . . 6
|
| 32 | 31 | eqeq2i 2634 |
. . . . 5
|
| 33 | eqcom 2629 |
. . . . 5
| |
| 34 | 32, 33 | bitri 264 |
. . . 4
|
| 35 | 1 | fveq1i 6192 |
. . . . . 6
|
| 36 | 35 | eqeq2i 2634 |
. . . . 5
|
| 37 | eqcom 2629 |
. . . . 5
| |
| 38 | 36, 37 | bitri 264 |
. . . 4
|
| 39 | 1 | fveq1i 6192 |
. . . . . 6
|
| 40 | 39 | eqeq2i 2634 |
. . . . 5
|
| 41 | eqcom 2629 |
. . . . 5
| |
| 42 | 40, 41 | bitri 264 |
. . . 4
|
| 43 | 34, 38, 42 | 3anbi123i 1251 |
. . 3
|
| 44 | 30, 43 | sylibr 224 |
. 2
|
| 45 | 21, 25, 44 | 3jca 1242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-s2 13593 df-s3 13594 df-edg 25940 df-umgr 25978 df-wlks 26495 |
| This theorem is referenced by: umgr2adedgwlkonALT 26843 umgr2wlk 26845 |
| Copyright terms: Public domain | W3C validator |