MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2wlkon Structured version   Visualization version   Unicode version

Theorem umgr2wlkon 26846
Description: For each pair of adjacent edges in a multigraph, there is a walk of length 2 between the not common vertices of the edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
Hypothesis
Ref Expression
umgr2wlk.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
umgr2wlkon  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. f E. p  f ( A (WalksOn `  G ) C ) p )
Distinct variable groups:    A, f, p    B, f, p    C, f, p    f, G, p   
f, E, p

Proof of Theorem umgr2wlkon
StepHypRef Expression
1 umgr2wlk.e . . 3  |-  E  =  (Edg `  G )
21umgr2wlk 26845 . 2  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. f E. p
( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )
3 simp1 1061 . . . . . . 7  |-  ( ( f (Walks `  G
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  B  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  f (Walks `  G ) p )
4 eqcom 2629 . . . . . . . . . 10  |-  ( A  =  ( p ` 
0 )  <->  ( p `  0 )  =  A )
54biimpi 206 . . . . . . . . 9  |-  ( A  =  ( p ` 
0 )  ->  (
p `  0 )  =  A )
653ad2ant1 1082 . . . . . . . 8  |-  ( ( A  =  ( p `
 0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( p ` 
0 )  =  A )
763ad2ant3 1084 . . . . . . 7  |-  ( ( f (Walks `  G
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  B  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  ( p ` 
0 )  =  A )
8 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( 2  =  ( # `  f
)  ->  ( p `  2 )  =  ( p `  ( # `
 f ) ) )
98eqcoms 2630 . . . . . . . . . . . . . 14  |-  ( (
# `  f )  =  2  ->  (
p `  2 )  =  ( p `  ( # `  f ) ) )
109eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( (
# `  f )  =  2  ->  (
( p `  2
)  =  C  <->  ( p `  ( # `  f
) )  =  C ) )
1110biimpcd 239 . . . . . . . . . . . 12  |-  ( ( p `  2 )  =  C  ->  (
( # `  f )  =  2  ->  (
p `  ( # `  f
) )  =  C ) )
1211eqcoms 2630 . . . . . . . . . . 11  |-  ( C  =  ( p ` 
2 )  ->  (
( # `  f )  =  2  ->  (
p `  ( # `  f
) )  =  C ) )
13123ad2ant3 1084 . . . . . . . . . 10  |-  ( ( A  =  ( p `
 0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( ( # `  f )  =  2  ->  ( p `  ( # `  f ) )  =  C ) )
1413com12 32 . . . . . . . . 9  |-  ( (
# `  f )  =  2  ->  (
( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( p `  ( # `  f
) )  =  C ) )
1514a1i 11 . . . . . . . 8  |-  ( f (Walks `  G )
p  ->  ( ( # `
 f )  =  2  ->  ( ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( p `  ( # `  f ) )  =  C ) ) )
16153imp 1256 . . . . . . 7  |-  ( ( f (Walks `  G
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  B  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  ( p `  ( # `  f ) )  =  C )
173, 7, 163jca 1242 . . . . . 6  |-  ( ( f (Walks `  G
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  B  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  ( f (Walks `  G ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C ) )
1817adantl 482 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( f
(Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  -> 
( f (Walks `  G ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C ) )
191umgr2adedgwlklem 26840 . . . . . . 7  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G )  /\  C  e.  (Vtx `  G
) ) ) )
20 simprr1 1109 . . . . . . . 8  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( ( A  =/=  B  /\  B  =/=  C )  /\  ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G )  /\  C  e.  (Vtx `  G
) ) ) )  ->  A  e.  (Vtx
`  G ) )
21 simprr3 1111 . . . . . . . 8  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( ( A  =/=  B  /\  B  =/=  C )  /\  ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G )  /\  C  e.  (Vtx `  G
) ) ) )  ->  C  e.  (Vtx
`  G ) )
2220, 21jca 554 . . . . . . 7  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( ( A  =/=  B  /\  B  =/=  C )  /\  ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G )  /\  C  e.  (Vtx `  G
) ) ) )  ->  ( A  e.  (Vtx `  G )  /\  C  e.  (Vtx `  G ) ) )
2319, 22mpdan 702 . . . . . 6  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( A  e.  (Vtx
`  G )  /\  C  e.  (Vtx `  G
) ) )
24 vex 3203 . . . . . . . 8  |-  f  e. 
_V
25 vex 3203 . . . . . . . 8  |-  p  e. 
_V
2624, 25pm3.2i 471 . . . . . . 7  |-  ( f  e.  _V  /\  p  e.  _V )
2726a1i 11 . . . . . 6  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( f
(Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  -> 
( f  e.  _V  /\  p  e.  _V )
)
28 eqid 2622 . . . . . . 7  |-  (Vtx `  G )  =  (Vtx
`  G )
2928iswlkon 26553 . . . . . 6  |-  ( ( ( A  e.  (Vtx
`  G )  /\  C  e.  (Vtx `  G
) )  /\  (
f  e.  _V  /\  p  e.  _V )
)  ->  ( f
( A (WalksOn `  G
) C ) p  <-> 
( f (Walks `  G ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C ) ) )
3023, 27, 29syl2an2r 876 . . . . 5  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( f
(Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  -> 
( f ( A (WalksOn `  G ) C ) p  <->  ( f
(Walks `  G )
p  /\  ( p `  0 )  =  A  /\  ( p `
 ( # `  f
) )  =  C ) ) )
3118, 30mpbird 247 . . . 4  |-  ( ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  /\  ( f
(Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  -> 
f ( A (WalksOn `  G ) C ) p )
3231ex 450 . . 3  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  f ( A (WalksOn `  G ) C ) p ) )
33322eximdv 1848 . 2  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  E. f E. p  f ( A (WalksOn `  G ) C ) p ) )
342, 33mpd 15 1  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. f E. p  f ( A (WalksOn `  G ) C ) p )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200   {cpr 4179   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   2c2 11070   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   UMGraph cumgr 25976  Walkscwlks 26492  WalksOncwlkson 26493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-wlks 26495  df-wlkson 26496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator