MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgriseupth Structured version   Visualization version   Unicode version

Theorem upgriseupth 27067
Description: The property " <. F ,  P >. is an Eulerian path on the pseudograph  G". (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 18-Feb-2021.) (Revised by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eupths.i  |-  I  =  (iEdg `  G )
upgriseupth.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
upgriseupth  |-  ( G  e. UPGraph  ->  ( F (EulerPaths `  G ) P  <->  ( F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } ) ) )
Distinct variable groups:    k, F    k, G    k, I    P, k    k, V

Proof of Theorem upgriseupth
StepHypRef Expression
1 eupths.i . . . 4  |-  I  =  (iEdg `  G )
21iseupthf1o 27062 . . 3  |-  ( F (EulerPaths `  G ) P  <-> 
( F (Walks `  G ) P  /\  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I ) )
32a1i 11 . 2  |-  ( G  e. UPGraph  ->  ( F (EulerPaths `  G ) P  <->  ( F
(Walks `  G ) P  /\  F : ( 0..^ ( # `  F
) ) -1-1-onto-> dom  I ) ) )
4 upgriseupth.v . . . 4  |-  V  =  (Vtx `  G )
54, 1upgriswlk 26537 . . 3  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
65anbi1d 741 . 2  |-  ( G  e. UPGraph  ->  ( ( F (Walks `  G ) P  /\  F : ( 0..^ ( # `  F
) ) -1-1-onto-> dom  I )  <->  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  /\  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I ) ) )
7 simpr 477 . . . . 5  |-  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  /\  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I )  ->  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I )
8 simpl2 1065 . . . . 5  |-  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  /\  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I )  ->  P : ( 0 ... ( # `  F
) ) --> V )
9 simpl3 1066 . . . . 5  |-  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  /\  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I )  ->  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )
107, 8, 93jca 1242 . . . 4  |-  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  /\  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I )  ->  ( F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } ) )
11 f1of 6137 . . . . . . 7  |-  ( F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I  ->  F :
( 0..^ ( # `  F ) ) --> dom  I )
12 iswrdi 13309 . . . . . . 7  |-  ( F : ( 0..^ (
# `  F )
) --> dom  I  ->  F  e. Word  dom  I )
1311, 12syl 17 . . . . . 6  |-  ( F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I  ->  F  e. Word  dom  I )
14133anim1i 1248 . . . . 5  |-  ( ( F : ( 0..^ ( # `  F
) ) -1-1-onto-> dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
15 simp1 1061 . . . . 5  |-  ( ( F : ( 0..^ ( # `  F
) ) -1-1-onto-> dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I )
1614, 15jca 554 . . . 4  |-  ( ( F : ( 0..^ ( # `  F
) ) -1-1-onto-> dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  (
( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  /\  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I ) )
1710, 16impbii 199 . . 3  |-  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  /\  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I )  <->  ( F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } ) )
1817a1i 11 . 2  |-  ( G  e. UPGraph  ->  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  /\  F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I )  <->  ( F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } ) ) )
193, 6, 183bitrd 294 1  |-  ( G  e. UPGraph  ->  ( F (EulerPaths `  G ) P  <->  ( F : ( 0..^ (
# `  F )
)
-1-1-onto-> dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {cpr 4179   class class class wbr 4653   dom cdm 5114   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975  Walkscwlks 26492  EulerPathsceupth 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495  df-trls 26589  df-eupth 27058
This theorem is referenced by:  upgreupthi  27068
  Copyright terms: Public domain W3C validator