MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextsur Structured version   Visualization version   Unicode version

Theorem wwlksnextsur 26795
Description: Lemma for wwlksnextbij 26797. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.)
Hypotheses
Ref Expression
wwlksnextbij0.v  |-  V  =  (Vtx `  G )
wwlksnextbij0.e  |-  E  =  (Edg `  G )
wwlksnextbij0.d  |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }
wwlksnextbij.r  |-  R  =  { n  e.  V  |  { ( lastS  `  W
) ,  n }  e.  E }
wwlksnextbij.f  |-  F  =  ( t  e.  D  |->  ( lastS  `  t )
)
Assertion
Ref Expression
wwlksnextsur  |-  ( W  e.  ( N WWalksN  G
)  ->  F : D -onto-> R )
Distinct variable groups:    w, G    w, N    w, W    t, D    n, E, w    t, N, w    t, R    n, V, w    n, W    t, n, N, w
Allowed substitution hints:    D( w, n)    R( w, n)    E( t)    F( w, t, n)    G( t, n)    V( t)    W( t)

Proof of Theorem wwlksnextsur
Dummy variables  i 
d  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.v . . . 4  |-  V  =  (Vtx `  G )
21wwlknbp 26733 . . 3  |-  ( W  e.  ( N WWalksN  G
)  ->  ( G  e.  _V  /\  N  e. 
NN0  /\  W  e. Word  V ) )
3 simp2 1062 . . 3  |-  ( ( G  e.  _V  /\  N  e.  NN0  /\  W  e. Word  V )  ->  N  e.  NN0 )
4 wwlksnextbij0.e . . . 4  |-  E  =  (Edg `  G )
5 wwlksnextbij0.d . . . 4  |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }
6 wwlksnextbij.r . . . 4  |-  R  =  { n  e.  V  |  { ( lastS  `  W
) ,  n }  e.  E }
7 wwlksnextbij.f . . . 4  |-  F  =  ( t  e.  D  |->  ( lastS  `  t )
)
81, 4, 5, 6, 7wwlksnextfun 26793 . . 3  |-  ( N  e.  NN0  ->  F : D
--> R )
92, 3, 83syl 18 . 2  |-  ( W  e.  ( N WWalksN  G
)  ->  F : D
--> R )
10 preq2 4269 . . . . . 6  |-  ( n  =  r  ->  { ( lastS  `  W ) ,  n }  =  { ( lastS  `  W ) ,  r } )
1110eleq1d 2686 . . . . 5  |-  ( n  =  r  ->  ( { ( lastS  `  W ) ,  n }  e.  E 
<->  { ( lastS  `  W
) ,  r }  e.  E ) )
1211, 6elrab2 3366 . . . 4  |-  ( r  e.  R  <->  ( r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )
131, 4wwlksnext 26788 . . . . . . . . . . 11  |-  ( ( W  e.  ( N WWalksN  G )  /\  r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E )  ->  ( W ++  <" r "> )  e.  ( ( N  + 
1 ) WWalksN  G )
)
14133expb 1266 . . . . . . . . . 10  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  -> 
( W ++  <" r "> )  e.  ( ( N  +  1 ) WWalksN  G ) )
15 s1cl 13382 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  V  ->  <" r ">  e. Word  V )
16 swrdccat1 13457 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e. Word  V  /\  <" r ">  e. Word  V )  ->  (
( W ++  <" r "> ) substr  <. 0 ,  ( # `  W
) >. )  =  W )
1715, 16sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e. Word  V  /\  r  e.  V )  ->  ( ( W ++  <" r "> ) substr  <.
0 ,  ( # `  W ) >. )  =  W )
1817ex 450 . . . . . . . . . . . . . . . 16  |-  ( W  e. Word  V  ->  (
r  e.  V  -> 
( ( W ++  <" r "> ) substr  <.
0 ,  ( # `  W ) >. )  =  W ) )
1918adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  ( N  + 
1 ) )  -> 
( r  e.  V  ->  ( ( W ++  <" r "> ) substr  <.
0 ,  ( # `  W ) >. )  =  W ) )
20 opeq2 4403 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  +  1 )  =  ( # `  W
)  ->  <. 0 ,  ( N  +  1 ) >.  =  <. 0 ,  ( # `  W
) >. )
2120eqcoms 2630 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  W )  =  ( N  + 
1 )  ->  <. 0 ,  ( N  + 
1 ) >.  =  <. 0 ,  ( # `  W
) >. )
2221oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  W )  =  ( N  + 
1 )  ->  (
( W ++  <" r "> ) substr  <. 0 ,  ( N  +  1 ) >. )  =  ( ( W ++  <" r "> ) substr  <. 0 ,  ( # `  W
) >. ) )
2322eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( (
# `  W )  =  ( N  + 
1 )  ->  (
( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W  <->  ( ( W ++  <" r "> ) substr  <. 0 ,  ( # `  W
) >. )  =  W ) )
2423adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  ( N  + 
1 ) )  -> 
( ( ( W ++ 
<" r "> ) substr  <. 0 ,  ( N  +  1 )
>. )  =  W  <->  ( ( W ++  <" r "> ) substr  <. 0 ,  ( # `  W
) >. )  =  W ) )
2519, 24sylibrd 249 . . . . . . . . . . . . . 14  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  ( N  + 
1 ) )  -> 
( r  e.  V  ->  ( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W ) )
26253adant3 1081 . . . . . . . . . . . . 13  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  ( N  + 
1 )  /\  A. i  e.  ( 0..^ N ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E )  ->  (
r  e.  V  -> 
( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W ) )
271, 4wwlknp 26734 . . . . . . . . . . . . 13  |-  ( W  e.  ( N WWalksN  G
)  ->  ( W  e. Word  V  /\  ( # `  W )  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E ) )
2826, 27syl11 33 . . . . . . . . . . . 12  |-  ( r  e.  V  ->  ( W  e.  ( N WWalksN  G )  ->  ( ( W ++  <" r "> ) substr  <. 0 ,  ( N  +  1 ) >. )  =  W ) )
2928adantr 481 . . . . . . . . . . 11  |-  ( ( r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E )  ->  ( W  e.  ( N WWalksN  G )  ->  ( ( W ++  <" r "> ) substr  <. 0 ,  ( N  +  1 ) >. )  =  W ) )
3029impcom 446 . . . . . . . . . 10  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  -> 
( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W )
31 lswccats1 13411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( W  e. Word  V  /\  r  e.  V )  ->  ( lastS  `  ( W ++  <" r "> ) )  =  r )
3231eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e. Word  V  /\  r  e.  V )  ->  r  =  ( lastS  `  ( W ++  <" r "> ) ) )
3332ex 450 . . . . . . . . . . . . . . . . 17  |-  ( W  e. Word  V  ->  (
r  e.  V  -> 
r  =  ( lastS  `  ( W ++  <" r "> ) ) ) )
34333ad2ant3 1084 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  _V  /\  N  e.  NN0  /\  W  e. Word  V )  ->  (
r  e.  V  -> 
r  =  ( lastS  `  ( W ++  <" r "> ) ) ) )
352, 34syl 17 . . . . . . . . . . . . . . 15  |-  ( W  e.  ( N WWalksN  G
)  ->  ( r  e.  V  ->  r  =  ( lastS  `  ( W ++  <" r "> ) ) ) )
3635imp 445 . . . . . . . . . . . . . 14  |-  ( ( W  e.  ( N WWalksN  G )  /\  r  e.  V )  ->  r  =  ( lastS  `  ( W ++ 
<" r "> ) ) )
3736preq2d 4275 . . . . . . . . . . . . 13  |-  ( ( W  e.  ( N WWalksN  G )  /\  r  e.  V )  ->  { ( lastS  `  W ) ,  r }  =  { ( lastS  `  W ) ,  ( lastS  `  ( W ++  <" r "> ) ) } )
3837eleq1d 2686 . . . . . . . . . . . 12  |-  ( ( W  e.  ( N WWalksN  G )  /\  r  e.  V )  ->  ( { ( lastS  `  W ) ,  r }  e.  E 
<->  { ( lastS  `  W
) ,  ( lastS  `  ( W ++  <" r "> ) ) }  e.  E ) )
3938biimpd 219 . . . . . . . . . . 11  |-  ( ( W  e.  ( N WWalksN  G )  /\  r  e.  V )  ->  ( { ( lastS  `  W ) ,  r }  e.  E  ->  { ( lastS  `  W
) ,  ( lastS  `  ( W ++  <" r "> ) ) }  e.  E ) )
4039impr 649 . . . . . . . . . 10  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  ->  { ( lastS  `  W ) ,  ( lastS  `  ( W ++  <" r "> ) ) }  e.  E )
4114, 30, 40jca32 558 . . . . . . . . 9  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  -> 
( ( W ++  <" r "> )  e.  ( ( N  + 
1 ) WWalksN  G )  /\  ( ( ( W ++ 
<" r "> ) substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  ( W ++  <" r "> ) ) }  e.  E ) ) )
4234, 2syl11 33 . . . . . . . . . . 11  |-  ( r  e.  V  ->  ( W  e.  ( N WWalksN  G )  ->  r  =  ( lastS  `  ( W ++  <" r "> )
) ) )
4342adantr 481 . . . . . . . . . 10  |-  ( ( r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E )  ->  ( W  e.  ( N WWalksN  G )  ->  r  =  ( lastS  `  ( W ++  <" r "> )
) ) )
4443impcom 446 . . . . . . . . 9  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  -> 
r  =  ( lastS  `  ( W ++  <" r "> ) ) )
45 ovexd 6680 . . . . . . . . . 10  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  -> 
( W ++  <" r "> )  e.  _V )
46 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( d  =  ( W ++  <" r "> )  ->  ( d  e.  ( ( N  +  1 ) WWalksN  G )  <->  ( W ++  <" r "> )  e.  ( ( N  +  1 ) WWalksN  G ) ) )
47 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( d  =  ( W ++  <" r "> )  ->  ( d substr  <. 0 ,  ( N  + 
1 ) >. )  =  ( ( W ++ 
<" r "> ) substr  <. 0 ,  ( N  +  1 )
>. ) )
4847eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( d  =  ( W ++  <" r "> )  ->  ( ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  <->  ( ( W ++  <" r "> ) substr  <. 0 ,  ( N  +  1 ) >. )  =  W ) )
49 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  ( W ++  <" r "> )  ->  ( lastS  `  d )  =  ( lastS  `  ( W ++ 
<" r "> ) ) )
5049preq2d 4275 . . . . . . . . . . . . . . . . 17  |-  ( d  =  ( W ++  <" r "> )  ->  { ( lastS  `  W
) ,  ( lastS  `  d
) }  =  {
( lastS  `  W ) ,  ( lastS  `  ( W ++  <" r "> ) ) } )
5150eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( d  =  ( W ++  <" r "> )  ->  ( { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E  <->  { ( lastS  `  W ) ,  ( lastS  `  ( W ++ 
<" r "> ) ) }  e.  E ) )
5248, 51anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( d  =  ( W ++  <" r "> )  ->  ( ( ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E )  <-> 
( ( ( W ++ 
<" r "> ) substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  ( W ++  <" r "> ) ) }  e.  E ) ) )
5346, 52anbi12d 747 . . . . . . . . . . . . . 14  |-  ( d  =  ( W ++  <" r "> )  ->  ( ( d  e.  ( ( N  + 
1 ) WWalksN  G )  /\  ( ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  <->  ( ( W ++ 
<" r "> )  e.  ( ( N  +  1 ) WWalksN  G )  /\  (
( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  ( W ++ 
<" r "> ) ) }  e.  E ) ) ) )
5449eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( d  =  ( W ++  <" r "> )  ->  ( r  =  ( lastS  `  d )  <->  r  =  ( lastS  `  ( W ++  <" r "> )
) ) )
5553, 54anbi12d 747 . . . . . . . . . . . . 13  |-  ( d  =  ( W ++  <" r "> )  ->  ( ( ( d  e.  ( ( N  +  1 ) WWalksN  G
)  /\  ( (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  r  =  ( lastS  `  d ) )  <->  ( ( ( W ++  <" r "> )  e.  ( ( N  +  1 ) WWalksN  G )  /\  (
( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  ( W ++ 
<" r "> ) ) }  e.  E ) )  /\  r  =  ( lastS  `  ( W ++  <" r "> ) ) ) ) )
5655bicomd 213 . . . . . . . . . . . 12  |-  ( d  =  ( W ++  <" r "> )  ->  ( ( ( ( W ++  <" r "> )  e.  ( ( N  +  1 ) WWalksN  G )  /\  (
( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  ( W ++ 
<" r "> ) ) }  e.  E ) )  /\  r  =  ( lastS  `  ( W ++  <" r "> ) ) )  <-> 
( ( d  e.  ( ( N  + 
1 ) WWalksN  G )  /\  ( ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  /\  r  =  ( lastS  `  d )
) ) )
5756adantl 482 . . . . . . . . . . 11  |-  ( ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  /\  d  =  ( W ++  <" r "> ) )  ->  (
( ( ( W ++ 
<" r "> )  e.  ( ( N  +  1 ) WWalksN  G )  /\  (
( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  ( W ++ 
<" r "> ) ) }  e.  E ) )  /\  r  =  ( lastS  `  ( W ++  <" r "> ) ) )  <-> 
( ( d  e.  ( ( N  + 
1 ) WWalksN  G )  /\  ( ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  /\  r  =  ( lastS  `  d )
) ) )
5857biimpd 219 . . . . . . . . . 10  |-  ( ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  /\  d  =  ( W ++  <" r "> ) )  ->  (
( ( ( W ++ 
<" r "> )  e.  ( ( N  +  1 ) WWalksN  G )  /\  (
( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  ( W ++ 
<" r "> ) ) }  e.  E ) )  /\  r  =  ( lastS  `  ( W ++  <" r "> ) ) )  ->  ( ( d  e.  ( ( N  +  1 ) WWalksN  G
)  /\  ( (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  r  =  ( lastS  `  d ) ) ) )
5945, 58spcimedv 3292 . . . . . . . . 9  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  -> 
( ( ( ( W ++  <" r "> )  e.  ( ( N  +  1 ) WWalksN  G )  /\  (
( ( W ++  <" r "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  ( W ++ 
<" r "> ) ) }  e.  E ) )  /\  r  =  ( lastS  `  ( W ++  <" r "> ) ) )  ->  E. d ( ( d  e.  ( ( N  +  1 ) WWalksN  G )  /\  (
( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  r  =  ( lastS  `  d ) ) ) )
6041, 44, 59mp2and 715 . . . . . . . 8  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  ->  E. d ( ( d  e.  ( ( N  +  1 ) WWalksN  G
)  /\  ( (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  r  =  ( lastS  `  d ) ) )
61 oveq1 6657 . . . . . . . . . . . . 13  |-  ( w  =  d  ->  (
w substr  <. 0 ,  ( N  +  1 )
>. )  =  (
d substr  <. 0 ,  ( N  +  1 )
>. ) )
6261eqeq1d 2624 . . . . . . . . . . . 12  |-  ( w  =  d  ->  (
( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  <-> 
( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W ) )
63 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( w  =  d  ->  ( lastS  `  w )  =  ( lastS  `  d ) )
6463preq2d 4275 . . . . . . . . . . . . 13  |-  ( w  =  d  ->  { ( lastS  `  W ) ,  ( lastS  `  w ) }  =  { ( lastS  `  W ) ,  ( lastS  `  d
) } )
6564eleq1d 2686 . . . . . . . . . . . 12  |-  ( w  =  d  ->  ( { ( lastS  `  W ) ,  ( lastS  `  w
) }  e.  E  <->  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )
6662, 65anbi12d 747 . . . . . . . . . . 11  |-  ( w  =  d  ->  (
( ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E )  <->  ( (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) ) )
6766elrab 3363 . . . . . . . . . 10  |-  ( d  e.  { w  e.  ( ( N  + 
1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }  <->  ( d  e.  ( ( N  + 
1 ) WWalksN  G )  /\  ( ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) ) )
6867anbi1i 731 . . . . . . . . 9  |-  ( ( d  e.  { w  e.  ( ( N  + 
1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }  /\  r  =  ( lastS  `  d )
)  <->  ( ( d  e.  ( ( N  +  1 ) WWalksN  G
)  /\  ( (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  r  =  ( lastS  `  d ) ) )
6968exbii 1774 . . . . . . . 8  |-  ( E. d ( d  e. 
{ w  e.  ( ( N  +  1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }  /\  r  =  ( lastS  `  d
) )  <->  E. d
( ( d  e.  ( ( N  + 
1 ) WWalksN  G )  /\  ( ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  /\  r  =  ( lastS  `  d )
) )
7060, 69sylibr 224 . . . . . . 7  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  ->  E. d ( d  e. 
{ w  e.  ( ( N  +  1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }  /\  r  =  ( lastS  `  d
) ) )
71 df-rex 2918 . . . . . . 7  |-  ( E. d  e.  { w  e.  ( ( N  + 
1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) } r  =  ( lastS  `  d )  <->  E. d
( d  e.  {
w  e.  ( ( N  +  1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }  /\  r  =  ( lastS  `  d
) ) )
7270, 71sylibr 224 . . . . . 6  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  ->  E. d  e.  { w  e.  ( ( N  + 
1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) } r  =  ( lastS  `  d ) )
731, 4, 5wwlksnextwrd 26792 . . . . . . . 8  |-  ( W  e.  ( N WWalksN  G
)  ->  D  =  { w  e.  (
( N  +  1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) } )
7473adantr 481 . . . . . . 7  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  ->  D  =  { w  e.  ( ( N  + 
1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) } )
7574rexeqdv 3145 . . . . . 6  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  -> 
( E. d  e.  D  r  =  ( lastS  `  d )  <->  E. d  e.  { w  e.  ( ( N  +  1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) } r  =  ( lastS  `  d
) ) )
7672, 75mpbird 247 . . . . 5  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  ->  E. d  e.  D  r  =  ( lastS  `  d
) )
77 fveq2 6191 . . . . . . . 8  |-  ( t  =  d  ->  ( lastS  `  t )  =  ( lastS  `  d ) )
78 fvex 6201 . . . . . . . 8  |-  ( lastS  `  d
)  e.  _V
7977, 7, 78fvmpt 6282 . . . . . . 7  |-  ( d  e.  D  ->  ( F `  d )  =  ( lastS  `  d ) )
8079eqeq2d 2632 . . . . . 6  |-  ( d  e.  D  ->  (
r  =  ( F `
 d )  <->  r  =  ( lastS  `  d ) ) )
8180rexbiia 3040 . . . . 5  |-  ( E. d  e.  D  r  =  ( F `  d )  <->  E. d  e.  D  r  =  ( lastS  `  d ) )
8276, 81sylibr 224 . . . 4  |-  ( ( W  e.  ( N WWalksN  G )  /\  (
r  e.  V  /\  { ( lastS  `  W ) ,  r }  e.  E ) )  ->  E. d  e.  D  r  =  ( F `  d ) )
8312, 82sylan2b 492 . . 3  |-  ( ( W  e.  ( N WWalksN  G )  /\  r  e.  R )  ->  E. d  e.  D  r  =  ( F `  d ) )
8483ralrimiva 2966 . 2  |-  ( W  e.  ( N WWalksN  G
)  ->  A. r  e.  R  E. d  e.  D  r  =  ( F `  d ) )
85 dffo3 6374 . 2  |-  ( F : D -onto-> R  <->  ( F : D --> R  /\  A. r  e.  R  E. d  e.  D  r  =  ( F `  d ) ) )
869, 84, 85sylanbrc 698 1  |-  ( W  e.  ( N WWalksN  G
)  ->  F : D -onto-> R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   {cpr 4179   <.cop 4183    |-> cmpt 4729   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wwlksnextbij0  26796
  Copyright terms: Public domain W3C validator