MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextinj Structured version   Visualization version   Unicode version

Theorem wwlksnextinj 26794
Description: Lemma for wwlksnextbij 26797. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.)
Hypotheses
Ref Expression
wwlksnextbij0.v  |-  V  =  (Vtx `  G )
wwlksnextbij0.e  |-  E  =  (Edg `  G )
wwlksnextbij0.d  |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }
wwlksnextbij.r  |-  R  =  { n  e.  V  |  { ( lastS  `  W
) ,  n }  e.  E }
wwlksnextbij.f  |-  F  =  ( t  e.  D  |->  ( lastS  `  t )
)
Assertion
Ref Expression
wwlksnextinj  |-  ( N  e.  NN0  ->  F : D -1-1-> R )
Distinct variable groups:    w, G    w, N    w, W    t, D    n, E    w, E    t, N, w    t, R   
n, V    w, V    n, W    t, n
Allowed substitution hints:    D( w, n)    R( w, n)    E( t)    F( w, t, n)    G( t, n)    N( n)    V( t)    W( t)

Proof of Theorem wwlksnextinj
Dummy variables  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.v . . 3  |-  V  =  (Vtx `  G )
2 wwlksnextbij0.e . . 3  |-  E  =  (Edg `  G )
3 wwlksnextbij0.d . . 3  |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }
4 wwlksnextbij.r . . 3  |-  R  =  { n  e.  V  |  { ( lastS  `  W
) ,  n }  e.  E }
5 wwlksnextbij.f . . 3  |-  F  =  ( t  e.  D  |->  ( lastS  `  t )
)
61, 2, 3, 4, 5wwlksnextfun 26793 . 2  |-  ( N  e.  NN0  ->  F : D
--> R )
7 fveq2 6191 . . . . . . 7  |-  ( t  =  d  ->  ( lastS  `  t )  =  ( lastS  `  d ) )
8 fvex 6201 . . . . . . 7  |-  ( lastS  `  d
)  e.  _V
97, 5, 8fvmpt 6282 . . . . . 6  |-  ( d  e.  D  ->  ( F `  d )  =  ( lastS  `  d ) )
10 fveq2 6191 . . . . . . 7  |-  ( t  =  x  ->  ( lastS  `  t )  =  ( lastS  `  x ) )
11 fvex 6201 . . . . . . 7  |-  ( lastS  `  x
)  e.  _V
1210, 5, 11fvmpt 6282 . . . . . 6  |-  ( x  e.  D  ->  ( F `  x )  =  ( lastS  `  x ) )
139, 12eqeqan12d 2638 . . . . 5  |-  ( ( d  e.  D  /\  x  e.  D )  ->  ( ( F `  d )  =  ( F `  x )  <-> 
( lastS  `  d )  =  ( lastS  `  x )
) )
1413adantl 482 . . . 4  |-  ( ( N  e.  NN0  /\  ( d  e.  D  /\  x  e.  D
) )  ->  (
( F `  d
)  =  ( F `
 x )  <->  ( lastS  `  d
)  =  ( lastS  `  x
) ) )
15 fveq2 6191 . . . . . . . . 9  |-  ( w  =  d  ->  ( # `
 w )  =  ( # `  d
) )
1615eqeq1d 2624 . . . . . . . 8  |-  ( w  =  d  ->  (
( # `  w )  =  ( N  + 
2 )  <->  ( # `  d
)  =  ( N  +  2 ) ) )
17 oveq1 6657 . . . . . . . . 9  |-  ( w  =  d  ->  (
w substr  <. 0 ,  ( N  +  1 )
>. )  =  (
d substr  <. 0 ,  ( N  +  1 )
>. ) )
1817eqeq1d 2624 . . . . . . . 8  |-  ( w  =  d  ->  (
( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  <-> 
( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W ) )
19 fveq2 6191 . . . . . . . . . 10  |-  ( w  =  d  ->  ( lastS  `  w )  =  ( lastS  `  d ) )
2019preq2d 4275 . . . . . . . . 9  |-  ( w  =  d  ->  { ( lastS  `  W ) ,  ( lastS  `  w ) }  =  { ( lastS  `  W ) ,  ( lastS  `  d
) } )
2120eleq1d 2686 . . . . . . . 8  |-  ( w  =  d  ->  ( { ( lastS  `  W ) ,  ( lastS  `  w
) }  e.  E  <->  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )
2216, 18, 213anbi123d 1399 . . . . . . 7  |-  ( w  =  d  ->  (
( ( # `  w
)  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  w
) }  e.  E
)  <->  ( ( # `  d )  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) ) )
2322, 3elrab2 3366 . . . . . 6  |-  ( d  e.  D  <->  ( d  e. Word  V  /\  ( (
# `  d )  =  ( N  + 
2 )  /\  (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) ) )
24 fveq2 6191 . . . . . . . . 9  |-  ( w  =  x  ->  ( # `
 w )  =  ( # `  x
) )
2524eqeq1d 2624 . . . . . . . 8  |-  ( w  =  x  ->  (
( # `  w )  =  ( N  + 
2 )  <->  ( # `  x
)  =  ( N  +  2 ) ) )
26 oveq1 6657 . . . . . . . . 9  |-  ( w  =  x  ->  (
w substr  <. 0 ,  ( N  +  1 )
>. )  =  (
x substr  <. 0 ,  ( N  +  1 )
>. ) )
2726eqeq1d 2624 . . . . . . . 8  |-  ( w  =  x  ->  (
( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  <-> 
( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W ) )
28 fveq2 6191 . . . . . . . . . 10  |-  ( w  =  x  ->  ( lastS  `  w )  =  ( lastS  `  x ) )
2928preq2d 4275 . . . . . . . . 9  |-  ( w  =  x  ->  { ( lastS  `  W ) ,  ( lastS  `  w ) }  =  { ( lastS  `  W ) ,  ( lastS  `  x
) } )
3029eleq1d 2686 . . . . . . . 8  |-  ( w  =  x  ->  ( { ( lastS  `  W ) ,  ( lastS  `  w
) }  e.  E  <->  { ( lastS  `  W ) ,  ( lastS  `  x ) }  e.  E ) )
3125, 27, 303anbi123d 1399 . . . . . . 7  |-  ( w  =  x  ->  (
( ( # `  w
)  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  w
) }  e.  E
)  <->  ( ( # `  x )  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  x ) }  e.  E ) ) )
3231, 3elrab2 3366 . . . . . 6  |-  ( x  e.  D  <->  ( x  e. Word  V  /\  ( (
# `  x )  =  ( N  + 
2 )  /\  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )
33 eqtr3 2643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  d
)  =  ( N  +  2 )  /\  ( # `  x )  =  ( N  + 
2 ) )  -> 
( # `  d )  =  ( # `  x
) )
3433expcom 451 . . . . . . . . . . . . . . . 16  |-  ( (
# `  x )  =  ( N  + 
2 )  ->  (
( # `  d )  =  ( N  + 
2 )  ->  ( # `
 d )  =  ( # `  x
) ) )
35343ad2ant1 1082 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
)  ->  ( ( # `
 d )  =  ( N  +  2 )  ->  ( # `  d
)  =  ( # `  x ) ) )
3635adantl 482 . . . . . . . . . . . . . 14  |-  ( ( x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  (
( # `  d )  =  ( N  + 
2 )  ->  ( # `
 d )  =  ( # `  x
) ) )
3736com12 32 . . . . . . . . . . . . 13  |-  ( (
# `  d )  =  ( N  + 
2 )  ->  (
( x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  ( # `
 d )  =  ( # `  x
) ) )
38373ad2ant1 1082 . . . . . . . . . . . 12  |-  ( ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
)  ->  ( (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  ( # `
 d )  =  ( # `  x
) ) )
3938adantl 482 . . . . . . . . . . 11  |-  ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  ->  (
( x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  ( # `
 d )  =  ( # `  x
) ) )
4039imp 445 . . . . . . . . . 10  |-  ( ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  -> 
( # `  d )  =  ( # `  x
) )
4140adantr 481 . . . . . . . . 9  |-  ( ( ( ( d  e. Word  V  /\  ( ( # `  d )  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  /\  ( x  e. Word  V  /\  (
( # `  x )  =  ( N  + 
2 )  /\  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  -> 
( # `  d )  =  ( # `  x
) )
4241adantr 481 . . . . . . . 8  |-  ( ( ( ( ( d  e. Word  V  /\  (
( # `  d )  =  ( N  + 
2 )  /\  (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  /\  ( lastS  `  d )  =  ( lastS  `  x )
)  ->  ( # `  d
)  =  ( # `  x ) )
43 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( d  e. Word  V  /\  (
( # `  d )  =  ( N  + 
2 )  /\  (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  /\  ( lastS  `  d )  =  ( lastS  `  x )
)  ->  ( lastS  `  d
)  =  ( lastS  `  x
) )
44 eqtr3 2643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( d substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W
)  ->  ( d substr  <.
0 ,  ( N  +  1 ) >.
)  =  ( x substr  <. 0 ,  ( N  +  1 ) >.
) )
45 1e2m1 11136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  1  =  ( 2  -  1 )
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN0  ->  1  =  ( 2  -  1 ) )
4746oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN0  ->  ( N  +  1 )  =  ( N  +  ( 2  -  1 ) ) )
48 nn0cn 11302 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN0  ->  N  e.  CC )
49 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN0  ->  2  e.  CC )
50 1cnd 10056 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN0  ->  1  e.  CC )
5148, 49, 50addsubassd 10412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN0  ->  ( ( N  +  2 )  -  1 )  =  ( N  +  ( 2  -  1 ) ) )
5247, 51eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN0  ->  ( N  +  1 )  =  ( ( N  + 
2 )  -  1 ) )
5352adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN0  /\  ( # `  d )  =  ( N  + 
2 ) )  -> 
( N  +  1 )  =  ( ( N  +  2 )  -  1 ) )
54 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
# `  d )  =  ( N  + 
2 )  ->  (
( # `  d )  -  1 )  =  ( ( N  + 
2 )  -  1 ) )
5554eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  d )  =  ( N  + 
2 )  ->  (
( N  +  1 )  =  ( (
# `  d )  -  1 )  <->  ( N  +  1 )  =  ( ( N  + 
2 )  -  1 ) ) )
5655adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN0  /\  ( # `  d )  =  ( N  + 
2 ) )  -> 
( ( N  + 
1 )  =  ( ( # `  d
)  -  1 )  <-> 
( N  +  1 )  =  ( ( N  +  2 )  -  1 ) ) )
5753, 56mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN0  /\  ( # `  d )  =  ( N  + 
2 ) )  -> 
( N  +  1 )  =  ( (
# `  d )  -  1 ) )
58 opeq2 4403 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  +  1 )  =  ( ( # `  d )  -  1 )  ->  <. 0 ,  ( N  +  1 ) >.  =  <. 0 ,  ( ( # `
 d )  - 
1 ) >. )
5958oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  +  1 )  =  ( ( # `  d )  -  1 )  ->  ( d substr  <.
0 ,  ( N  +  1 ) >.
)  =  ( d substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) )
6058oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  +  1 )  =  ( ( # `  d )  -  1 )  ->  ( x substr  <.
0 ,  ( N  +  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) )
6159, 60eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  +  1 )  =  ( ( # `  d )  -  1 )  ->  ( (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  (
x substr  <. 0 ,  ( N  +  1 )
>. )  <->  ( d substr  <. 0 ,  ( ( # `
 d )  - 
1 ) >. )  =  ( x substr  <. 0 ,  ( ( # `  d )  -  1 ) >. ) ) )
6257, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN0  /\  ( # `  d )  =  ( N  + 
2 ) )  -> 
( ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  ( x substr  <. 0 ,  ( N  +  1 ) >.
)  <->  ( d substr  <. 0 ,  ( ( # `
 d )  - 
1 ) >. )  =  ( x substr  <. 0 ,  ( ( # `  d )  -  1 ) >. ) ) )
6362biimpd 219 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN0  /\  ( # `  d )  =  ( N  + 
2 ) )  -> 
( ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  ( x substr  <. 0 ,  ( N  +  1 ) >.
)  ->  ( d substr  <.
0 ,  ( (
# `  d )  -  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) ) )
6463ex 450 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  ( (
# `  d )  =  ( N  + 
2 )  ->  (
( d substr  <. 0 ,  ( N  +  1 ) >. )  =  ( x substr  <. 0 ,  ( N  +  1 )
>. )  ->  ( d substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) ) ) )
6564com13 88 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d substr  <. 0 ,  ( N  +  1 )
>. )  =  (
x substr  <. 0 ,  ( N  +  1 )
>. )  ->  ( (
# `  d )  =  ( N  + 
2 )  ->  ( N  e.  NN0  ->  (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) ) )
6644, 65syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( d substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  /\  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W
)  ->  ( ( # `
 d )  =  ( N  +  2 )  ->  ( N  e.  NN0  ->  ( d substr  <.
0 ,  ( (
# `  d )  -  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) ) ) )
6766ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( ( d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  ->  ( ( x substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  ->  ( (
# `  d )  =  ( N  + 
2 )  ->  ( N  e.  NN0  ->  (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) ) ) )
6867com23 86 . . . . . . . . . . . . . . . . 17  |-  ( ( d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  ->  ( ( # `  d
)  =  ( N  +  2 )  -> 
( ( x substr  <. 0 ,  ( N  + 
1 ) >. )  =  W  ->  ( N  e.  NN0  ->  ( d substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) ) ) ) )
6968impcom 446 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W )  ->  ( (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W  ->  ( N  e.  NN0  ->  ( d substr  <. 0 ,  ( ( # `  d )  -  1 ) >. )  =  ( x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) ) )
7069com12 32 . . . . . . . . . . . . . . 15  |-  ( ( x substr  <. 0 ,  ( N  +  1 )
>. )  =  W  ->  ( ( ( # `  d )  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W )  ->  ( N  e. 
NN0  ->  ( d substr  <. 0 ,  ( ( # `
 d )  - 
1 ) >. )  =  ( x substr  <. 0 ,  ( ( # `  d )  -  1 ) >. ) ) ) )
71703ad2ant2 1083 . . . . . . . . . . . . . 14  |-  ( ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
)  ->  ( (
( # `  d )  =  ( N  + 
2 )  /\  (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W
)  ->  ( N  e.  NN0  ->  ( d substr  <.
0 ,  ( (
# `  d )  -  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) ) ) )
7271adantl 482 . . . . . . . . . . . . 13  |-  ( ( x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  (
( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W )  ->  ( N  e.  NN0  ->  ( d substr  <.
0 ,  ( (
# `  d )  -  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) ) ) )
7372com12 32 . . . . . . . . . . . 12  |-  ( ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W )  ->  ( (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  ( N  e.  NN0  ->  (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) ) )
74733adant3 1081 . . . . . . . . . . 11  |-  ( ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
)  ->  ( (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  ( N  e.  NN0  ->  (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) ) )
7574adantl 482 . . . . . . . . . 10  |-  ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  ->  (
( x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  ( N  e.  NN0  ->  (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) ) )
7675imp31 448 . . . . . . . . 9  |-  ( ( ( ( d  e. Word  V  /\  ( ( # `  d )  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  /\  ( x  e. Word  V  /\  (
( # `  x )  =  ( N  + 
2 )  /\  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  -> 
( d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) )
7776adantr 481 . . . . . . . 8  |-  ( ( ( ( ( d  e. Word  V  /\  (
( # `  d )  =  ( N  + 
2 )  /\  (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  /\  ( lastS  `  d )  =  ( lastS  `  x )
)  ->  ( d substr  <.
0 ,  ( (
# `  d )  -  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) )
78 simpl 473 . . . . . . . . . . . . 13  |-  ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  ->  d  e. Word  V )
79 simpl 473 . . . . . . . . . . . . 13  |-  ( ( x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  x  e. Word  V )
8078, 79anim12i 590 . . . . . . . . . . . 12  |-  ( ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  -> 
( d  e. Word  V  /\  x  e. Word  V ) )
8180adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( d  e. Word  V  /\  ( ( # `  d )  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  /\  ( x  e. Word  V  /\  (
( # `  x )  =  ( N  + 
2 )  /\  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  -> 
( d  e. Word  V  /\  x  e. Word  V ) )
82 nn0re 11301 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  N  e.  RR )
83 2re 11090 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  RR
8483a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  2  e.  RR )
85 nn0ge0 11318 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  0  <_  N )
86 2pos 11112 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  <  2
8786a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  0  <  2 )
8882, 84, 85, 87addgegt0d 10601 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  0  < 
( N  +  2 ) )
8988adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( # `  d
)  =  ( N  +  2 )  /\  N  e.  NN0 )  -> 
0  <  ( N  +  2 ) )
90 breq2 4657 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  d )  =  ( N  + 
2 )  ->  (
0  <  ( # `  d
)  <->  0  <  ( N  +  2 ) ) )
9190adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( # `  d
)  =  ( N  +  2 )  /\  N  e.  NN0 )  -> 
( 0  <  ( # `
 d )  <->  0  <  ( N  +  2 ) ) )
9289, 91mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( # `  d
)  =  ( N  +  2 )  /\  N  e.  NN0 )  -> 
0  <  ( # `  d
) )
93 hashgt0n0 13156 . . . . . . . . . . . . . . . . . 18  |-  ( ( d  e. Word  V  /\  0  <  ( # `  d
) )  ->  d  =/=  (/) )
9492, 93sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  N  e.  NN0 ) )  ->  d  =/=  (/) )
9594exp32 631 . . . . . . . . . . . . . . . 16  |-  ( d  e. Word  V  ->  (
( # `  d )  =  ( N  + 
2 )  ->  ( N  e.  NN0  ->  d  =/=  (/) ) ) )
9695com12 32 . . . . . . . . . . . . . . 15  |-  ( (
# `  d )  =  ( N  + 
2 )  ->  (
d  e. Word  V  ->  ( N  e.  NN0  ->  d  =/=  (/) ) ) )
97963ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
)  ->  ( d  e. Word  V  ->  ( N  e.  NN0  ->  d  =/=  (/) ) ) )
9897impcom 446 . . . . . . . . . . . . 13  |-  ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  ->  ( N  e.  NN0  ->  d  =/=  (/) ) )
9998adantr 481 . . . . . . . . . . . 12  |-  ( ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  -> 
( N  e.  NN0  ->  d  =/=  (/) ) )
10099imp 445 . . . . . . . . . . 11  |-  ( ( ( ( d  e. Word  V  /\  ( ( # `  d )  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  /\  ( x  e. Word  V  /\  (
( # `  x )  =  ( N  + 
2 )  /\  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  -> 
d  =/=  (/) )
10188adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( # `  x
)  =  ( N  +  2 )  /\  N  e.  NN0 )  -> 
0  <  ( N  +  2 ) )
102 breq2 4657 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  x )  =  ( N  + 
2 )  ->  (
0  <  ( # `  x
)  <->  0  <  ( N  +  2 ) ) )
103102adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( # `  x
)  =  ( N  +  2 )  /\  N  e.  NN0 )  -> 
( 0  <  ( # `
 x )  <->  0  <  ( N  +  2 ) ) )
104101, 103mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( # `  x
)  =  ( N  +  2 )  /\  N  e.  NN0 )  -> 
0  <  ( # `  x
) )
105 hashgt0n0 13156 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e. Word  V  /\  0  <  ( # `  x
) )  ->  x  =/=  (/) )
106104, 105sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  N  e.  NN0 ) )  ->  x  =/=  (/) )
107106exp32 631 . . . . . . . . . . . . . . . 16  |-  ( x  e. Word  V  ->  (
( # `  x )  =  ( N  + 
2 )  ->  ( N  e.  NN0  ->  x  =/=  (/) ) ) )
108107com12 32 . . . . . . . . . . . . . . 15  |-  ( (
# `  x )  =  ( N  + 
2 )  ->  (
x  e. Word  V  ->  ( N  e.  NN0  ->  x  =/=  (/) ) ) )
1091083ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
)  ->  ( x  e. Word  V  ->  ( N  e.  NN0  ->  x  =/=  (/) ) ) )
110109impcom 446 . . . . . . . . . . . . 13  |-  ( ( x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) )  ->  ( N  e.  NN0  ->  x  =/=  (/) ) )
111110adantl 482 . . . . . . . . . . . 12  |-  ( ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  -> 
( N  e.  NN0  ->  x  =/=  (/) ) )
112111imp 445 . . . . . . . . . . 11  |-  ( ( ( ( d  e. Word  V  /\  ( ( # `  d )  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  /\  ( x  e. Word  V  /\  (
( # `  x )  =  ( N  + 
2 )  /\  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  ->  x  =/=  (/) )
11381, 100, 112jca32 558 . . . . . . . . . 10  |-  ( ( ( ( d  e. Word  V  /\  ( ( # `  d )  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >.
)  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  d ) }  e.  E ) )  /\  ( x  e. Word  V  /\  (
( # `  x )  =  ( N  + 
2 )  /\  (
x substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  -> 
( ( d  e. Word  V  /\  x  e. Word  V
)  /\  ( d  =/=  (/)  /\  x  =/=  (/) ) ) )
114113adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( d  e. Word  V  /\  (
( # `  d )  =  ( N  + 
2 )  /\  (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  /\  ( lastS  `  d )  =  ( lastS  `  x )
)  ->  ( (
d  e. Word  V  /\  x  e. Word  V )  /\  ( d  =/=  (/)  /\  x  =/=  (/) ) ) )
115 simpl 473 . . . . . . . . . . . 12  |-  ( ( d  e. Word  V  /\  x  e. Word  V )  ->  d  e. Word  V )
116115adantr 481 . . . . . . . . . . 11  |-  ( ( ( d  e. Word  V  /\  x  e. Word  V )  /\  ( d  =/=  (/)  /\  x  =/=  (/) ) )  ->  d  e. Word  V
)
117 simpr 477 . . . . . . . . . . . 12  |-  ( ( d  e. Word  V  /\  x  e. Word  V )  ->  x  e. Word  V )
118117adantr 481 . . . . . . . . . . 11  |-  ( ( ( d  e. Word  V  /\  x  e. Word  V )  /\  ( d  =/=  (/)  /\  x  =/=  (/) ) )  ->  x  e. Word  V
)
119 hashneq0 13155 . . . . . . . . . . . . . . . 16  |-  ( d  e. Word  V  ->  (
0  <  ( # `  d
)  <->  d  =/=  (/) ) )
120119biimprd 238 . . . . . . . . . . . . . . 15  |-  ( d  e. Word  V  ->  (
d  =/=  (/)  ->  0  <  ( # `  d
) ) )
121120adantr 481 . . . . . . . . . . . . . 14  |-  ( ( d  e. Word  V  /\  x  e. Word  V )  ->  ( d  =/=  (/)  ->  0  <  ( # `  d
) ) )
122121com12 32 . . . . . . . . . . . . 13  |-  ( d  =/=  (/)  ->  ( (
d  e. Word  V  /\  x  e. Word  V )  ->  0  <  ( # `  d ) ) )
123122adantr 481 . . . . . . . . . . . 12  |-  ( ( d  =/=  (/)  /\  x  =/=  (/) )  ->  (
( d  e. Word  V  /\  x  e. Word  V )  ->  0  <  ( # `
 d ) ) )
124123impcom 446 . . . . . . . . . . 11  |-  ( ( ( d  e. Word  V  /\  x  e. Word  V )  /\  ( d  =/=  (/)  /\  x  =/=  (/) ) )  ->  0  <  ( # `
 d ) )
125 2swrd1eqwrdeq 13454 . . . . . . . . . . 11  |-  ( ( d  e. Word  V  /\  x  e. Word  V  /\  0  <  ( # `  d
) )  ->  (
d  =  x  <->  ( ( # `
 d )  =  ( # `  x
)  /\  ( (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  /\  ( lastS  `  d )  =  ( lastS  `  x ) ) ) ) )
126116, 118, 124, 125syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( d  e. Word  V  /\  x  e. Word  V )  /\  ( d  =/=  (/)  /\  x  =/=  (/) ) )  ->  ( d  =  x  <->  ( ( # `  d )  =  (
# `  x )  /\  ( ( d substr  <. 0 ,  ( ( # `
 d )  - 
1 ) >. )  =  ( x substr  <. 0 ,  ( ( # `  d )  -  1 ) >. )  /\  ( lastS  `  d )  =  ( lastS  `  x ) ) ) ) )
127 ancom 466 . . . . . . . . . . . 12  |-  ( ( ( d substr  <. 0 ,  ( ( # `  d )  -  1 ) >. )  =  ( x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  /\  ( lastS  `  d )  =  ( lastS  `  x ) )  <->  ( ( lastS  `  d )  =  ( lastS  `  x )  /\  (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) )
128127anbi2i 730 . . . . . . . . . . 11  |-  ( ( ( # `  d
)  =  ( # `  x )  /\  (
( d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  /\  ( lastS  `  d )  =  ( lastS  `  x ) ) )  <-> 
( ( # `  d
)  =  ( # `  x )  /\  (
( lastS  `  d )  =  ( lastS  `  x )  /\  ( d substr  <. 0 ,  ( ( # `  d )  -  1 ) >. )  =  ( x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) ) )
129 3anass 1042 . . . . . . . . . . 11  |-  ( ( ( # `  d
)  =  ( # `  x )  /\  ( lastS  `  d )  =  ( lastS  `  x )  /\  (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) )  <->  ( ( # `
 d )  =  ( # `  x
)  /\  ( ( lastS  `  d )  =  ( lastS  `  x )  /\  (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) ) )
130128, 129bitr4i 267 . . . . . . . . . 10  |-  ( ( ( # `  d
)  =  ( # `  x )  /\  (
( d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  /\  ( lastS  `  d )  =  ( lastS  `  x ) ) )  <-> 
( ( # `  d
)  =  ( # `  x )  /\  ( lastS  `  d )  =  ( lastS  `  x )  /\  (
d substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. )  =  (
x substr  <. 0 ,  ( ( # `  d
)  -  1 )
>. ) ) )
131126, 130syl6bb 276 . . . . . . . . 9  |-  ( ( ( d  e. Word  V  /\  x  e. Word  V )  /\  ( d  =/=  (/)  /\  x  =/=  (/) ) )  ->  ( d  =  x  <->  ( ( # `  d )  =  (
# `  x )  /\  ( lastS  `  d )  =  ( lastS  `  x
)  /\  ( d substr  <.
0 ,  ( (
# `  d )  -  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) ) ) )
132114, 131syl 17 . . . . . . . 8  |-  ( ( ( ( ( d  e. Word  V  /\  (
( # `  d )  =  ( N  + 
2 )  /\  (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  /\  ( lastS  `  d )  =  ( lastS  `  x )
)  ->  ( d  =  x  <->  ( ( # `  d )  =  (
# `  x )  /\  ( lastS  `  d )  =  ( lastS  `  x
)  /\  ( d substr  <.
0 ,  ( (
# `  d )  -  1 ) >.
)  =  ( x substr  <. 0 ,  ( (
# `  d )  -  1 ) >.
) ) ) )
13342, 43, 77, 132mpbir3and 1245 . . . . . . 7  |-  ( ( ( ( ( d  e. Word  V  /\  (
( # `  d )  =  ( N  + 
2 )  /\  (
d substr  <. 0 ,  ( N  +  1 )
>. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  /\  N  e.  NN0 )  /\  ( lastS  `  d )  =  ( lastS  `  x )
)  ->  d  =  x )
134133exp31 630 . . . . . 6  |-  ( ( ( d  e. Word  V  /\  ( ( # `  d
)  =  ( N  +  2 )  /\  ( d substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  d
) }  e.  E
) )  /\  (
x  e. Word  V  /\  ( ( # `  x
)  =  ( N  +  2 )  /\  ( x substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W
) ,  ( lastS  `  x
) }  e.  E
) ) )  -> 
( N  e.  NN0  ->  ( ( lastS  `  d
)  =  ( lastS  `  x
)  ->  d  =  x ) ) )
13523, 32, 134syl2anb 496 . . . . 5  |-  ( ( d  e.  D  /\  x  e.  D )  ->  ( N  e.  NN0  ->  ( ( lastS  `  d
)  =  ( lastS  `  x
)  ->  d  =  x ) ) )
136135impcom 446 . . . 4  |-  ( ( N  e.  NN0  /\  ( d  e.  D  /\  x  e.  D
) )  ->  (
( lastS  `  d )  =  ( lastS  `  x )  ->  d  =  x ) )
13714, 136sylbid 230 . . 3  |-  ( ( N  e.  NN0  /\  ( d  e.  D  /\  x  e.  D
) )  ->  (
( F `  d
)  =  ( F `
 x )  -> 
d  =  x ) )
138137ralrimivva 2971 . 2  |-  ( N  e.  NN0  ->  A. d  e.  D  A. x  e.  D  ( ( F `  d )  =  ( F `  x )  ->  d  =  x ) )
139 dff13 6512 . 2  |-  ( F : D -1-1-> R  <->  ( F : D --> R  /\  A. d  e.  D  A. x  e.  D  (
( F `  d
)  =  ( F `
 x )  -> 
d  =  x ) ) )
1406, 138, 139sylanbrc 698 1  |-  ( N  e.  NN0  ->  F : D -1-1-> R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   (/)c0 3915   {cpr 4179   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   2c2 11070   NN0cn0 11292   #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-s1 13302  df-substr 13303
This theorem is referenced by:  wwlksnextbij0  26796
  Copyright terms: Public domain W3C validator