| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcco2 | Structured version Visualization version Unicode version | ||
| Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpcco2.t |
|
| xpcco2.x |
|
| xpcco2.y |
|
| xpcco2.h |
|
| xpcco2.j |
|
| xpcco2.m |
|
| xpcco2.n |
|
| xpcco2.p |
|
| xpcco2.q |
|
| xpcco2.o1 |
|
| xpcco2.o2 |
|
| xpcco2.o |
|
| xpcco2.r |
|
| xpcco2.s |
|
| xpcco2.f |
|
| xpcco2.g |
|
| xpcco2.k |
|
| xpcco2.l |
|
| Ref | Expression |
|---|---|
| xpcco2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcco2.t |
. . 3
| |
| 2 | xpcco2.x |
. . . 4
| |
| 3 | xpcco2.y |
. . . 4
| |
| 4 | 1, 2, 3 | xpcbas 16818 |
. . 3
|
| 5 | eqid 2622 |
. . 3
| |
| 6 | xpcco2.o1 |
. . 3
| |
| 7 | xpcco2.o2 |
. . 3
| |
| 8 | xpcco2.o |
. . 3
| |
| 9 | xpcco2.m |
. . . 4
| |
| 10 | xpcco2.n |
. . . 4
| |
| 11 | opelxpi 5148 |
. . . 4
| |
| 12 | 9, 10, 11 | syl2anc 693 |
. . 3
|
| 13 | xpcco2.p |
. . . 4
| |
| 14 | xpcco2.q |
. . . 4
| |
| 15 | opelxpi 5148 |
. . . 4
| |
| 16 | 13, 14, 15 | syl2anc 693 |
. . 3
|
| 17 | xpcco2.r |
. . . 4
| |
| 18 | xpcco2.s |
. . . 4
| |
| 19 | opelxpi 5148 |
. . . 4
| |
| 20 | 17, 18, 19 | syl2anc 693 |
. . 3
|
| 21 | xpcco2.f |
. . . . 5
| |
| 22 | xpcco2.g |
. . . . 5
| |
| 23 | opelxpi 5148 |
. . . . 5
| |
| 24 | 21, 22, 23 | syl2anc 693 |
. . . 4
|
| 25 | xpcco2.h |
. . . . 5
| |
| 26 | xpcco2.j |
. . . . 5
| |
| 27 | 1, 2, 3, 25, 26, 9, 10, 13, 14, 5 | xpchom2 16826 |
. . . 4
|
| 28 | 24, 27 | eleqtrrd 2704 |
. . 3
|
| 29 | xpcco2.k |
. . . . 5
| |
| 30 | xpcco2.l |
. . . . 5
| |
| 31 | opelxpi 5148 |
. . . . 5
| |
| 32 | 29, 30, 31 | syl2anc 693 |
. . . 4
|
| 33 | 1, 2, 3, 25, 26, 13, 14, 17, 18, 5 | xpchom2 16826 |
. . . 4
|
| 34 | 32, 33 | eleqtrrd 2704 |
. . 3
|
| 35 | 1, 4, 5, 6, 7, 8, 12, 16, 20, 28, 34 | xpcco 16823 |
. 2
|
| 36 | op1stg 7180 |
. . . . . . 7
| |
| 37 | 9, 10, 36 | syl2anc 693 |
. . . . . 6
|
| 38 | op1stg 7180 |
. . . . . . 7
| |
| 39 | 13, 14, 38 | syl2anc 693 |
. . . . . 6
|
| 40 | 37, 39 | opeq12d 4410 |
. . . . 5
|
| 41 | op1stg 7180 |
. . . . . 6
| |
| 42 | 17, 18, 41 | syl2anc 693 |
. . . . 5
|
| 43 | 40, 42 | oveq12d 6668 |
. . . 4
|
| 44 | op1stg 7180 |
. . . . 5
| |
| 45 | 29, 30, 44 | syl2anc 693 |
. . . 4
|
| 46 | op1stg 7180 |
. . . . 5
| |
| 47 | 21, 22, 46 | syl2anc 693 |
. . . 4
|
| 48 | 43, 45, 47 | oveq123d 6671 |
. . 3
|
| 49 | op2ndg 7181 |
. . . . . . 7
| |
| 50 | 9, 10, 49 | syl2anc 693 |
. . . . . 6
|
| 51 | op2ndg 7181 |
. . . . . . 7
| |
| 52 | 13, 14, 51 | syl2anc 693 |
. . . . . 6
|
| 53 | 50, 52 | opeq12d 4410 |
. . . . 5
|
| 54 | op2ndg 7181 |
. . . . . 6
| |
| 55 | 17, 18, 54 | syl2anc 693 |
. . . . 5
|
| 56 | 53, 55 | oveq12d 6668 |
. . . 4
|
| 57 | op2ndg 7181 |
. . . . 5
| |
| 58 | 29, 30, 57 | syl2anc 693 |
. . . 4
|
| 59 | op2ndg 7181 |
. . . . 5
| |
| 60 | 21, 22, 59 | syl2anc 693 |
. . . 4
|
| 61 | 56, 58, 60 | oveq123d 6671 |
. . 3
|
| 62 | 48, 61 | opeq12d 4410 |
. 2
|
| 63 | 35, 62 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-hom 15966 df-cco 15967 df-xpc 16812 |
| This theorem is referenced by: prfcl 16843 evlfcllem 16861 curf1cl 16868 curf2cl 16871 curfcl 16872 uncfcurf 16879 hofcl 16899 |
| Copyright terms: Public domain | W3C validator |