Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrpxdivcld Structured version   Visualization version   Unicode version

Theorem xrpxdivcld 29643
Description: Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Hypotheses
Ref Expression
xrpxdivcld.1  |-  ( ph  ->  A  e.  ( 0 [,] +oo ) )
xrpxdivcld.2  |-  ( ph  ->  B  e.  RR+ )
Assertion
Ref Expression
xrpxdivcld  |-  ( ph  ->  ( A /𝑒  B )  e.  ( 0 [,] +oo )
)

Proof of Theorem xrpxdivcld
StepHypRef Expression
1 oveq1 6657 . . . 4  |-  ( A  =  0  ->  ( A /𝑒  B )  =  ( 0 /𝑒  B ) )
2 xrpxdivcld.2 . . . . 5  |-  ( ph  ->  B  e.  RR+ )
3 xdiv0rp 29638 . . . . 5  |-  ( B  e.  RR+  ->  ( 0 /𝑒  B )  =  0 )
42, 3syl 17 . . . 4  |-  ( ph  ->  ( 0 /𝑒  B )  =  0 )
51, 4sylan9eqr 2678 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  ( A /𝑒  B )  =  0 )
6 elxrge02 29640 . . . . 5  |-  ( ( A /𝑒  B )  e.  ( 0 [,] +oo )  <->  ( ( A /𝑒  B )  =  0  \/  ( A /𝑒  B )  e.  RR+  \/  ( A /𝑒  B )  = +oo ) )
76biimpri 218 . . . 4  |-  ( ( ( A /𝑒  B )  =  0  \/  ( A /𝑒  B )  e.  RR+  \/  ( A /𝑒  B )  = +oo )  ->  ( A /𝑒  B )  e.  ( 0 [,] +oo ) )
873o1cs 29309 . . 3  |-  ( ( A /𝑒  B )  =  0  ->  ( A /𝑒  B )  e.  ( 0 [,] +oo ) )
95, 8syl 17 . 2  |-  ( (
ph  /\  A  = 
0 )  ->  ( A /𝑒  B )  e.  ( 0 [,] +oo )
)
10 simpr 477 . . . 4  |-  ( (
ph  /\  A  e.  RR+ )  ->  A  e.  RR+ )
112adantr 481 . . . 4  |-  ( (
ph  /\  A  e.  RR+ )  ->  B  e.  RR+ )
1210, 11rpxdivcld 29642 . . 3  |-  ( (
ph  /\  A  e.  RR+ )  ->  ( A /𝑒  B
)  e.  RR+ )
1373o2cs 29310 . . 3  |-  ( ( A /𝑒  B )  e.  RR+  ->  ( A /𝑒  B )  e.  ( 0 [,] +oo )
)
1412, 13syl 17 . 2  |-  ( (
ph  /\  A  e.  RR+ )  ->  ( A /𝑒  B
)  e.  ( 0 [,] +oo ) )
15 oveq1 6657 . . . 4  |-  ( A  = +oo  ->  ( A /𝑒  B )  =  ( +oo /𝑒 
B ) )
16 xdivpnfrp 29641 . . . . 5  |-  ( B  e.  RR+  ->  ( +oo /𝑒  B )  = +oo )
172, 16syl 17 . . . 4  |-  ( ph  ->  ( +oo /𝑒  B )  = +oo )
1815, 17sylan9eqr 2678 . . 3  |-  ( (
ph  /\  A  = +oo )  ->  ( A /𝑒  B )  = +oo )
1973o3cs 29311 . . 3  |-  ( ( A /𝑒  B )  = +oo  ->  ( A /𝑒  B )  e.  ( 0 [,] +oo )
)
2018, 19syl 17 . 2  |-  ( (
ph  /\  A  = +oo )  ->  ( A /𝑒  B )  e.  ( 0 [,] +oo ) )
21 xrpxdivcld.1 . . 3  |-  ( ph  ->  A  e.  ( 0 [,] +oo ) )
22 elxrge02 29640 . . 3  |-  ( A  e.  ( 0 [,] +oo )  <->  ( A  =  0  \/  A  e.  RR+  \/  A  = +oo ) )
2321, 22sylib 208 . 2  |-  ( ph  ->  ( A  =  0  \/  A  e.  RR+  \/  A  = +oo )
)
249, 14, 20, 23mpjao3dan 1395 1  |-  ( ph  ->  ( A /𝑒  B )  e.  ( 0 [,] +oo )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990  (class class class)co 6650   0cc0 9936   +oocpnf 10071   RR+crp 11832   [,]cicc 12178   /𝑒 cxdiv 29625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-xdiv 29626
This theorem is referenced by:  measdivcstOLD  30287  measdivcst  30288
  Copyright terms: Public domain W3C validator