| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1arith | Structured version Visualization version Unicode version | ||
| Description: Fundamental theorem of
arithmetic, where a prime factorization is
represented as a sequence of prime exponents, for which only finitely
many primes have nonzero exponent. The function |
| Ref | Expression |
|---|---|
| 1arith.1 |
|
| 1arith.2 |
|
| Ref | Expression |
|---|---|
| 1arith |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 11386 |
. . . . . . 7
| |
| 2 | prmz 15389 |
. . . . . . . 8
| |
| 3 | 2 | ssriv 3607 |
. . . . . . 7
|
| 4 | 1, 3 | ssexi 4803 |
. . . . . 6
|
| 5 | 4 | mptex 6486 |
. . . . 5
|
| 6 | 1arith.1 |
. . . . 5
| |
| 7 | 5, 6 | fnmpti 6022 |
. . . 4
|
| 8 | 6 | 1arithlem3 15629 |
. . . . . . 7
|
| 9 | nn0ex 11298 |
. . . . . . . 8
| |
| 10 | 9, 4 | elmap 7886 |
. . . . . . 7
|
| 11 | 8, 10 | sylibr 224 |
. . . . . 6
|
| 12 | fzfi 12771 |
. . . . . . 7
| |
| 13 | ffn 6045 |
. . . . . . . . . 10
| |
| 14 | elpreima 6337 |
. . . . . . . . . 10
| |
| 15 | 8, 13, 14 | 3syl 18 |
. . . . . . . . 9
|
| 16 | 6 | 1arithlem2 15628 |
. . . . . . . . . . . 12
|
| 17 | 16 | eleq1d 2686 |
. . . . . . . . . . 11
|
| 18 | id 22 |
. . . . . . . . . . . . 13
| |
| 19 | dvdsle 15032 |
. . . . . . . . . . . . 13
| |
| 20 | 2, 18, 19 | syl2anr 495 |
. . . . . . . . . . . 12
|
| 21 | pcelnn 15574 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | ancoms 469 |
. . . . . . . . . . . 12
|
| 23 | prmnn 15388 |
. . . . . . . . . . . . . 14
| |
| 24 | nnuz 11723 |
. . . . . . . . . . . . . 14
| |
| 25 | 23, 24 | syl6eleq 2711 |
. . . . . . . . . . . . 13
|
| 26 | nnz 11399 |
. . . . . . . . . . . . 13
| |
| 27 | elfz5 12334 |
. . . . . . . . . . . . 13
| |
| 28 | 25, 26, 27 | syl2anr 495 |
. . . . . . . . . . . 12
|
| 29 | 20, 22, 28 | 3imtr4d 283 |
. . . . . . . . . . 11
|
| 30 | 17, 29 | sylbid 230 |
. . . . . . . . . 10
|
| 31 | 30 | expimpd 629 |
. . . . . . . . 9
|
| 32 | 15, 31 | sylbid 230 |
. . . . . . . 8
|
| 33 | 32 | ssrdv 3609 |
. . . . . . 7
|
| 34 | ssfi 8180 |
. . . . . . 7
| |
| 35 | 12, 33, 34 | sylancr 695 |
. . . . . 6
|
| 36 | cnveq 5296 |
. . . . . . . . 9
| |
| 37 | 36 | imaeq1d 5465 |
. . . . . . . 8
|
| 38 | 37 | eleq1d 2686 |
. . . . . . 7
|
| 39 | 1arith.2 |
. . . . . . 7
| |
| 40 | 38, 39 | elrab2 3366 |
. . . . . 6
|
| 41 | 11, 35, 40 | sylanbrc 698 |
. . . . 5
|
| 42 | 41 | rgen 2922 |
. . . 4
|
| 43 | ffnfv 6388 |
. . . 4
| |
| 44 | 7, 42, 43 | mpbir2an 955 |
. . 3
|
| 45 | 16 | adantlr 751 |
. . . . . . . 8
|
| 46 | 6 | 1arithlem2 15628 |
. . . . . . . . 9
|
| 47 | 46 | adantll 750 |
. . . . . . . 8
|
| 48 | 45, 47 | eqeq12d 2637 |
. . . . . . 7
|
| 49 | 48 | ralbidva 2985 |
. . . . . 6
|
| 50 | 6 | 1arithlem3 15629 |
. . . . . . 7
|
| 51 | ffn 6045 |
. . . . . . . 8
| |
| 52 | eqfnfv 6311 |
. . . . . . . 8
| |
| 53 | 13, 51, 52 | syl2an 494 |
. . . . . . 7
|
| 54 | 8, 50, 53 | syl2an 494 |
. . . . . 6
|
| 55 | nnnn0 11299 |
. . . . . . 7
| |
| 56 | nnnn0 11299 |
. . . . . . 7
| |
| 57 | pc11 15584 |
. . . . . . 7
| |
| 58 | 55, 56, 57 | syl2an 494 |
. . . . . 6
|
| 59 | 49, 54, 58 | 3bitr4d 300 |
. . . . 5
|
| 60 | 59 | biimpd 219 |
. . . 4
|
| 61 | 60 | rgen2a 2977 |
. . 3
|
| 62 | dff13 6512 |
. . 3
| |
| 63 | 44, 61, 62 | mpbir2an 955 |
. 2
|
| 64 | eqid 2622 |
. . . . . 6
| |
| 65 | cnveq 5296 |
. . . . . . . . . . . 12
| |
| 66 | 65 | imaeq1d 5465 |
. . . . . . . . . . 11
|
| 67 | 66 | eleq1d 2686 |
. . . . . . . . . 10
|
| 68 | 67, 39 | elrab2 3366 |
. . . . . . . . 9
|
| 69 | 68 | simplbi 476 |
. . . . . . . 8
|
| 70 | 9, 4 | elmap 7886 |
. . . . . . . 8
|
| 71 | 69, 70 | sylib 208 |
. . . . . . 7
|
| 72 | 71 | ad2antrr 762 |
. . . . . 6
|
| 73 | simplr 792 |
. . . . . . . . 9
| |
| 74 | 0re 10040 |
. . . . . . . . 9
| |
| 75 | ifcl 4130 |
. . . . . . . . 9
| |
| 76 | 73, 74, 75 | sylancl 694 |
. . . . . . . 8
|
| 77 | max1 12016 |
. . . . . . . . 9
| |
| 78 | 74, 73, 77 | sylancr 695 |
. . . . . . . 8
|
| 79 | flge0nn0 12621 |
. . . . . . . 8
| |
| 80 | 76, 78, 79 | syl2anc 693 |
. . . . . . 7
|
| 81 | nn0p1nn 11332 |
. . . . . . 7
| |
| 82 | 80, 81 | syl 17 |
. . . . . 6
|
| 83 | 73 | adantr 481 |
. . . . . . . . . 10
|
| 84 | 82 | adantr 481 |
. . . . . . . . . . 11
|
| 85 | 84 | nnred 11035 |
. . . . . . . . . 10
|
| 86 | zssre 11384 |
. . . . . . . . . . . 12
| |
| 87 | 3, 86 | sstri 3612 |
. . . . . . . . . . 11
|
| 88 | simprl 794 |
. . . . . . . . . . 11
| |
| 89 | 87, 88 | sseldi 3601 |
. . . . . . . . . 10
|
| 90 | 76 | adantr 481 |
. . . . . . . . . . 11
|
| 91 | max2 12018 |
. . . . . . . . . . . 12
| |
| 92 | 74, 83, 91 | sylancr 695 |
. . . . . . . . . . 11
|
| 93 | flltp1 12601 |
. . . . . . . . . . . 12
| |
| 94 | 90, 93 | syl 17 |
. . . . . . . . . . 11
|
| 95 | 83, 90, 85, 92, 94 | lelttrd 10195 |
. . . . . . . . . 10
|
| 96 | simprr 796 |
. . . . . . . . . 10
| |
| 97 | 83, 85, 89, 95, 96 | ltletrd 10197 |
. . . . . . . . 9
|
| 98 | 83, 89 | ltnled 10184 |
. . . . . . . . 9
|
| 99 | 97, 98 | mpbid 222 |
. . . . . . . 8
|
| 100 | 88 | biantrurd 529 |
. . . . . . . . . 10
|
| 101 | 72 | adantr 481 |
. . . . . . . . . . 11
|
| 102 | ffn 6045 |
. . . . . . . . . . 11
| |
| 103 | elpreima 6337 |
. . . . . . . . . . 11
| |
| 104 | 101, 102, 103 | 3syl 18 |
. . . . . . . . . 10
|
| 105 | 100, 104 | bitr4d 271 |
. . . . . . . . 9
|
| 106 | simplr 792 |
. . . . . . . . . 10
| |
| 107 | breq1 4656 |
. . . . . . . . . . 11
| |
| 108 | 107 | rspccv 3306 |
. . . . . . . . . 10
|
| 109 | 106, 108 | syl 17 |
. . . . . . . . 9
|
| 110 | 105, 109 | sylbid 230 |
. . . . . . . 8
|
| 111 | 99, 110 | mtod 189 |
. . . . . . 7
|
| 112 | 101, 88 | ffvelrnd 6360 |
. . . . . . . . 9
|
| 113 | elnn0 11294 |
. . . . . . . . 9
| |
| 114 | 112, 113 | sylib 208 |
. . . . . . . 8
|
| 115 | 114 | ord 392 |
. . . . . . 7
|
| 116 | 111, 115 | mpd 15 |
. . . . . 6
|
| 117 | 6, 64, 72, 82, 116 | 1arithlem4 15630 |
. . . . 5
|
| 118 | cnvimass 5485 |
. . . . . . 7
| |
| 119 | fdm 6051 |
. . . . . . . . 9
| |
| 120 | 71, 119 | syl 17 |
. . . . . . . 8
|
| 121 | 120, 87 | syl6eqss 3655 |
. . . . . . 7
|
| 122 | 118, 121 | syl5ss 3614 |
. . . . . 6
|
| 123 | 68 | simprbi 480 |
. . . . . 6
|
| 124 | fimaxre2 10969 |
. . . . . 6
| |
| 125 | 122, 123, 124 | syl2anc 693 |
. . . . 5
|
| 126 | 117, 125 | r19.29a 3078 |
. . . 4
|
| 127 | 126 | rgen 2922 |
. . 3
|
| 128 | dffo3 6374 |
. . 3
| |
| 129 | 44, 127, 128 | mpbir2an 955 |
. 2
|
| 130 | df-f1o 5895 |
. 2
| |
| 131 | 63, 129, 130 | mpbir2an 955 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 df-pc 15542 |
| This theorem is referenced by: 1arith2 15632 sqff1o 24908 |
| Copyright terms: Public domain | W3C validator |