| Step | Hyp | Ref
| Expression |
| 1 | | prmrec.3 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | 1 | nnred 11035 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 3 | 2 | rehalfcld 11279 |
. 2
⊢ (𝜑 → (𝑁 / 2) ∈ ℝ) |
| 4 | | fzfi 12771 |
. . . . . 6
⊢
(1...𝑁) ∈
Fin |
| 5 | | prmrec.4 |
. . . . . . 7
⊢ 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛} |
| 6 | | ssrab2 3687 |
. . . . . . 7
⊢ {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛} ⊆ (1...𝑁) |
| 7 | 5, 6 | eqsstri 3635 |
. . . . . 6
⊢ 𝑀 ⊆ (1...𝑁) |
| 8 | | ssfi 8180 |
. . . . . 6
⊢
(((1...𝑁) ∈ Fin
∧ 𝑀 ⊆ (1...𝑁)) → 𝑀 ∈ Fin) |
| 9 | 4, 7, 8 | mp2an 708 |
. . . . 5
⊢ 𝑀 ∈ Fin |
| 10 | | hashcl 13147 |
. . . . 5
⊢ (𝑀 ∈ Fin →
(#‘𝑀) ∈
ℕ0) |
| 11 | 9, 10 | ax-mp 5 |
. . . 4
⊢
(#‘𝑀) ∈
ℕ0 |
| 12 | 11 | nn0rei 11303 |
. . 3
⊢
(#‘𝑀) ∈
ℝ |
| 13 | 12 | a1i 11 |
. 2
⊢ (𝜑 → (#‘𝑀) ∈ ℝ) |
| 14 | | 2nn 11185 |
. . . . 5
⊢ 2 ∈
ℕ |
| 15 | | prmrec.2 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 16 | 15 | nnnn0d 11351 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 17 | | nnexpcl 12873 |
. . . . 5
⊢ ((2
∈ ℕ ∧ 𝐾
∈ ℕ0) → (2↑𝐾) ∈ ℕ) |
| 18 | 14, 16, 17 | sylancr 695 |
. . . 4
⊢ (𝜑 → (2↑𝐾) ∈ ℕ) |
| 19 | 18 | nnred 11035 |
. . 3
⊢ (𝜑 → (2↑𝐾) ∈ ℝ) |
| 20 | 1 | nnrpd 11870 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
| 21 | 20 | rpsqrtcld 14150 |
. . . 4
⊢ (𝜑 → (√‘𝑁) ∈
ℝ+) |
| 22 | 21 | rpred 11872 |
. . 3
⊢ (𝜑 → (√‘𝑁) ∈
ℝ) |
| 23 | 19, 22 | remulcld 10070 |
. 2
⊢ (𝜑 → ((2↑𝐾) · (√‘𝑁)) ∈ ℝ) |
| 24 | 2 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 25 | 24 | 2halvesd 11278 |
. . . . 5
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁) |
| 26 | 7 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ⊆ (1...𝑁)) |
| 27 | 15 | peano2nnd 11037 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 + 1) ∈ ℕ) |
| 28 | | elfzuz 12338 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) |
| 29 | | eluznn 11758 |
. . . . . . . . . . . . 13
⊢ (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝐾 + 1))) → 𝑘 ∈ ℕ) |
| 30 | 27, 28, 29 | syl2an 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
| 31 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
| 32 | | breq1 4656 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ∥ 𝑛 ↔ 𝑘 ∥ 𝑛)) |
| 33 | 31, 32 | anbi12d 747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛))) |
| 34 | 33 | rabbidv 3189 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
| 35 | | prmrec.7 |
. . . . . . . . . . . . . . 15
⊢ 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)}) |
| 36 | | ovex 6678 |
. . . . . . . . . . . . . . . 16
⊢
(1...𝑁) ∈
V |
| 37 | 36 | rabex 4813 |
. . . . . . . . . . . . . . 15
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ∈ V |
| 38 | 34, 35, 37 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
| 39 | 38 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
| 40 | | ssrab2 3687 |
. . . . . . . . . . . . 13
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ⊆ (1...𝑁) |
| 41 | 39, 40 | syl6eqss 3655 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
| 42 | 30, 41 | syldan 487 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
| 43 | 42 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 44 | | iunss 4561 |
. . . . . . . . . 10
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 45 | 43, 44 | sylibr 224 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 46 | 26, 45 | unssd 3789 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ⊆ (1...𝑁)) |
| 47 | | breq1 4656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 𝑞 → (𝑝 ∥ 𝑛 ↔ 𝑞 ∥ 𝑛)) |
| 48 | 47 | notbid 308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑞 → (¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑞 ∥ 𝑛)) |
| 49 | 48 | cbvralv 3171 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑝 ∈
(ℙ ∖ (1...𝐾))
¬ 𝑝 ∥ 𝑛 ↔ ∀𝑞 ∈ (ℙ ∖
(1...𝐾)) ¬ 𝑞 ∥ 𝑛) |
| 50 | | breq2 4657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑥 → (𝑞 ∥ 𝑛 ↔ 𝑞 ∥ 𝑥)) |
| 51 | 50 | notbid 308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑥 → (¬ 𝑞 ∥ 𝑛 ↔ ¬ 𝑞 ∥ 𝑥)) |
| 52 | 51 | ralbidv 2986 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥)) |
| 53 | 49, 52 | syl5bb 272 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥)) |
| 54 | 53, 5 | elrab2 3366 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥)) |
| 55 | | elun1 3780 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑀 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 56 | 54, 55 | sylbir 225 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 57 | 56 | ex 450 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1...𝑁) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
| 58 | 57 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
| 59 | | dfrex2 2996 |
. . . . . . . . . . . 12
⊢
(∃𝑞 ∈
(ℙ ∖ (1...𝐾))𝑞 ∥ 𝑥 ↔ ¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥) |
| 60 | | eldifn 3733 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 ∈ (ℙ ∖
(1...𝐾)) → ¬ 𝑞 ∈ (1...𝐾)) |
| 61 | 60 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → ¬ 𝑞 ∈ (1...𝐾)) |
| 62 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑞 ∈ (ℙ ∖
(1...𝐾)) → 𝑞 ∈
ℙ) |
| 63 | 62 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℙ) |
| 64 | | prmnn 15388 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℕ) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℕ) |
| 66 | | nnuz 11723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℕ =
(ℤ≥‘1) |
| 67 | 65, 66 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈
(ℤ≥‘1)) |
| 68 | 15 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 69 | 68 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝐾 ∈ ℤ) |
| 70 | | elfz5 12334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑞 ∈
(ℤ≥‘1) ∧ 𝐾 ∈ ℤ) → (𝑞 ∈ (1...𝐾) ↔ 𝑞 ≤ 𝐾)) |
| 71 | 67, 69, 70 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∈ (1...𝐾) ↔ 𝑞 ≤ 𝐾)) |
| 72 | 61, 71 | mtbid 314 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → ¬ 𝑞 ≤ 𝐾) |
| 73 | 15 | nnred 11035 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 74 | 73 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝐾 ∈ ℝ) |
| 75 | 65 | nnred 11035 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℝ) |
| 76 | 74, 75 | ltnled 10184 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 < 𝑞 ↔ ¬ 𝑞 ≤ 𝐾)) |
| 77 | 72, 76 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝐾 < 𝑞) |
| 78 | | prmz 15389 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) |
| 79 | 63, 78 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℤ) |
| 80 | | zltp1le 11427 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞)) |
| 81 | 69, 79, 80 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞)) |
| 82 | 77, 81 | mpbid 222 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 + 1) ≤ 𝑞) |
| 83 | | elfznn 12370 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) |
| 84 | 83 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ ℕ) |
| 85 | 84 | nnred 11035 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ ℝ) |
| 86 | 2 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑁 ∈ ℝ) |
| 87 | | simprr 796 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∥ 𝑥) |
| 88 | | dvdsle 15032 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥)) |
| 89 | 79, 84, 88 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥)) |
| 90 | 87, 89 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ≤ 𝑥) |
| 91 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ≤ 𝑁) |
| 92 | 91 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ≤ 𝑁) |
| 93 | 75, 85, 86, 90, 92 | letrd 10194 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ≤ 𝑁) |
| 94 | 68 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐾 + 1) ∈ ℤ) |
| 95 | 94 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 + 1) ∈ ℤ) |
| 96 | 1 | nnzd 11481 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 97 | 96 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑁 ∈ ℤ) |
| 98 | | elfz 12332 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑞 ∈ ((𝐾 + 1)...𝑁) ↔ ((𝐾 + 1) ≤ 𝑞 ∧ 𝑞 ≤ 𝑁))) |
| 99 | 79, 95, 97, 98 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∈ ((𝐾 + 1)...𝑁) ↔ ((𝐾 + 1) ≤ 𝑞 ∧ 𝑞 ≤ 𝑁))) |
| 100 | 82, 93, 99 | mpbir2and 957 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ((𝐾 + 1)...𝑁)) |
| 101 | | simplr 792 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ (1...𝑁)) |
| 102 | 63, 87 | jca 554 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥)) |
| 103 | 50 | anbi2d 740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑥 → ((𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥))) |
| 104 | 103 | elrab 3363 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥))) |
| 105 | 101, 102,
104 | sylanbrc 698 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
| 106 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = 𝑞 → (𝑝 ∈ ℙ ↔ 𝑞 ∈ ℙ)) |
| 107 | 106, 47 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 𝑞 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛))) |
| 108 | 107 | rabbidv 3189 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 𝑞 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
| 109 | 36 | rabex 4813 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)} ∈ V |
| 110 | 108, 35, 109 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 ∈ ℕ → (𝑊‘𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
| 111 | 65, 110 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑊‘𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
| 112 | 105, 111 | eleqtrrd 2704 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ (𝑊‘𝑞)) |
| 113 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑞 → (𝑊‘𝑘) = (𝑊‘𝑞)) |
| 114 | 113 | eliuni 4526 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑥 ∈ (𝑊‘𝑞)) → 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
| 115 | 100, 112,
114 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
| 116 | | elun2 3781 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 117 | 115, 116 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 118 | 117 | rexlimdvaa 3032 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
| 119 | 59, 118 | syl5bir 233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → (¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
| 120 | 58, 119 | pm2.61d 170 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 121 | 120 | ex 450 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (1...𝑁) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
| 122 | 121 | ssrdv 3609 |
. . . . . . . 8
⊢ (𝜑 → (1...𝑁) ⊆ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 123 | 46, 122 | eqssd 3620 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = (1...𝑁)) |
| 124 | 123 | fveq2d 6195 |
. . . . . 6
⊢ (𝜑 → (#‘(𝑀 ∪ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) = (#‘(1...𝑁))) |
| 125 | 1 | nnnn0d 11351 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 126 | | hashfz1 13134 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (#‘(1...𝑁)) =
𝑁) |
| 127 | 125, 126 | syl 17 |
. . . . . 6
⊢ (𝜑 → (#‘(1...𝑁)) = 𝑁) |
| 128 | 124, 127 | eqtr2d 2657 |
. . . . 5
⊢ (𝜑 → 𝑁 = (#‘(𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
| 129 | 9 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Fin) |
| 130 | | ssfi 8180 |
. . . . . . 7
⊢
(((1...𝑁) ∈ Fin
∧ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin) |
| 131 | 4, 45, 130 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin) |
| 132 | | breq1 4656 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ∥ 𝑥 ↔ 𝑘 ∥ 𝑥)) |
| 133 | 132 | notbid 308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑘 → (¬ 𝑝 ∥ 𝑥 ↔ ¬ 𝑘 ∥ 𝑥)) |
| 134 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑥 → (𝑝 ∥ 𝑛 ↔ 𝑝 ∥ 𝑥)) |
| 135 | 134 | notbid 308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑥 → (¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑝 ∥ 𝑥)) |
| 136 | 135 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑥)) |
| 137 | 136, 5 | elrab2 3366 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑥)) |
| 138 | 137 | simprbi 480 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑥) |
| 139 | 138 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ∀𝑝 ∈ (ℙ ∖
(1...𝐾)) ¬ 𝑝 ∥ 𝑥) |
| 140 | | simprr 796 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ℙ) |
| 141 | | noel 3919 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
𝑘 ∈
∅ |
| 142 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ((𝐾 + 1)...𝑁)) |
| 143 | 142 | biantrud 528 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)))) |
| 144 | | elin 3796 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁))) |
| 145 | 143, 144 | syl6bbr 278 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)))) |
| 146 | 73 | ltp1d 10954 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐾 < (𝐾 + 1)) |
| 147 | | fzdisj 12368 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐾 < (𝐾 + 1) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅) |
| 148 | 146, 147 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅) |
| 149 | 148 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅) |
| 150 | 149 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ 𝑘 ∈ ∅)) |
| 151 | 145, 150 | bitrd 268 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ∅)) |
| 152 | 141, 151 | mtbiri 317 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∈ (1...𝐾)) |
| 153 | 140, 152 | eldifd 3585 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ (ℙ ∖ (1...𝐾))) |
| 154 | 133, 139,
153 | rspcdva 3316 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∥ 𝑥) |
| 155 | 154 | expr 643 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑘 ∈ ℙ → ¬ 𝑘 ∥ 𝑥)) |
| 156 | | imnan 438 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℙ → ¬
𝑘 ∥ 𝑥) ↔ ¬ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥)) |
| 157 | 155, 156 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥)) |
| 158 | 30 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
| 159 | 158, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
| 160 | 159 | eleq2d 2687 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊‘𝑘) ↔ 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)})) |
| 161 | | breq2 4657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑥 → (𝑘 ∥ 𝑛 ↔ 𝑘 ∥ 𝑥)) |
| 162 | 161 | anbi2d 740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → ((𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥))) |
| 163 | 162 | elrab 3363 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥))) |
| 164 | 163 | simprbi 480 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} → (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥)) |
| 165 | 160, 164 | syl6bi 243 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊‘𝑘) → (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥))) |
| 166 | 157, 165 | mtod 189 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ 𝑥 ∈ (𝑊‘𝑘)) |
| 167 | 166 | nrexdv 3001 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ¬ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊‘𝑘)) |
| 168 | | eliun 4524 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ↔ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊‘𝑘)) |
| 169 | 167, 168 | sylnibr 319 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ¬ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
| 170 | 169 | ex 450 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑀 → ¬ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 171 | | imnan 438 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑀 → ¬ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ↔ ¬ (𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 172 | 170, 171 | sylib 208 |
. . . . . . . 8
⊢ (𝜑 → ¬ (𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 173 | | elin 3796 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ↔ (𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 174 | 172, 173 | sylnibr 319 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑥 ∈ (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 175 | 174 | eq0rdv 3979 |
. . . . . 6
⊢ (𝜑 → (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = ∅) |
| 176 | | hashun 13171 |
. . . . . 6
⊢ ((𝑀 ∈ Fin ∧ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin ∧ (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = ∅) → (#‘(𝑀 ∪ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) = ((#‘𝑀) + (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
| 177 | 129, 131,
175, 176 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → (#‘(𝑀 ∪ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) = ((#‘𝑀) + (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
| 178 | 25, 128, 177 | 3eqtrd 2660 |
. . . 4
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = ((#‘𝑀) + (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
| 179 | | hashcl 13147 |
. . . . . . 7
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ∈
ℕ0) |
| 180 | 131, 179 | syl 17 |
. . . . . 6
⊢ (𝜑 → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ∈
ℕ0) |
| 181 | 180 | nn0red 11352 |
. . . . 5
⊢ (𝜑 → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ∈ ℝ) |
| 182 | | fzfid 12772 |
. . . . . . . 8
⊢ (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin) |
| 183 | 27, 29 | sylan 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑘 ∈
ℕ) |
| 184 | | nnrecre 11057 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
| 185 | | 0re 10040 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 186 | | ifcl 4130 |
. . . . . . . . . . 11
⊢ (((1 /
𝑘) ∈ ℝ ∧ 0
∈ ℝ) → if(𝑘
∈ ℙ, (1 / 𝑘), 0)
∈ ℝ) |
| 187 | 184, 185,
186 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℝ) |
| 188 | 183, 187 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℝ) |
| 189 | 28, 188 | sylan2 491 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
| 190 | 182, 189 | fsumrecl 14465 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
| 191 | 2, 190 | remulcld 10070 |
. . . . . 6
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) |
| 192 | | prmrec.1 |
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0)) |
| 193 | | prmrec.5 |
. . . . . . . 8
⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝
) |
| 194 | | prmrec.6 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2)) |
| 195 | 192, 15, 1, 5, 193, 194, 35 | prmreclem4 15623 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝐾) → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 196 | | eluz 11701 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈
(ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝐾)) |
| 197 | 96, 68, 196 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝐾)) |
| 198 | | nnleltp1 11432 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁 ≤ 𝐾 ↔ 𝑁 < (𝐾 + 1))) |
| 199 | 1, 15, 198 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ≤ 𝐾 ↔ 𝑁 < (𝐾 + 1))) |
| 200 | | fzn 12357 |
. . . . . . . . . 10
⊢ (((𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅)) |
| 201 | 94, 96, 200 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅)) |
| 202 | 197, 199,
201 | 3bitrd 294 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘𝑁) ↔ ((𝐾 + 1)...𝑁) = ∅)) |
| 203 | | 0le0 11110 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
| 204 | 24 | mul01d 10235 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 · 0) = 0) |
| 205 | 203, 204 | syl5breqr 4691 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝑁 · 0)) |
| 206 | | iuneq1 4534 |
. . . . . . . . . . . . 13
⊢ (((𝐾 + 1)...𝑁) = ∅ → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) = ∪ 𝑘 ∈ ∅ (𝑊‘𝑘)) |
| 207 | | 0iun 4577 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑘 ∈ ∅ (𝑊‘𝑘) = ∅ |
| 208 | 206, 207 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (((𝐾 + 1)...𝑁) = ∅ → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) = ∅) |
| 209 | 208 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (((𝐾 + 1)...𝑁) = ∅ → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = (#‘∅)) |
| 210 | | hash0 13158 |
. . . . . . . . . . 11
⊢
(#‘∅) = 0 |
| 211 | 209, 210 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (((𝐾 + 1)...𝑁) = ∅ → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = 0) |
| 212 | | sumeq1 14419 |
. . . . . . . . . . . 12
⊢ (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 213 | | sum0 14452 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
∅ if(𝑘 ∈
ℙ, (1 / 𝑘), 0) =
0 |
| 214 | 212, 213 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0) |
| 215 | 214 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝐾 + 1)...𝑁) = ∅ → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0)) |
| 216 | 211, 215 | breq12d 4666 |
. . . . . . . . 9
⊢ (((𝐾 + 1)...𝑁) = ∅ → ((#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ 0 ≤ (𝑁 · 0))) |
| 217 | 205, 216 | syl5ibrcom 237 |
. . . . . . . 8
⊢ (𝜑 → (((𝐾 + 1)...𝑁) = ∅ → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 218 | 202, 217 | sylbid 230 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘𝑁) → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 219 | | uztric 11709 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝐾) ∨ 𝐾 ∈ (ℤ≥‘𝑁))) |
| 220 | 68, 96, 219 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝐾) ∨ 𝐾 ∈ (ℤ≥‘𝑁))) |
| 221 | 195, 218,
220 | mpjaod 396 |
. . . . . 6
⊢ (𝜑 → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
| 222 | | eqid 2622 |
. . . . . . . . . 10
⊢
(ℤ≥‘(𝐾 + 1)) =
(ℤ≥‘(𝐾 + 1)) |
| 223 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
| 224 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘)) |
| 225 | 223, 224 | ifbieq1d 4109 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 226 | | ovex 6678 |
. . . . . . . . . . . . 13
⊢ (1 /
𝑘) ∈
V |
| 227 | | c0ex 10034 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 228 | 226, 227 | ifex 4156 |
. . . . . . . . . . . 12
⊢ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ V |
| 229 | 225, 192,
228 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 230 | 183, 229 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 231 | 187 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℂ) |
| 232 | 229, 231 | eqeltrd 2701 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) ∈ ℂ) |
| 233 | 232 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| 234 | 66, 27, 233 | iserex 14387 |
. . . . . . . . . . 11
⊢ (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔
seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝
)) |
| 235 | 193, 234 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ ) |
| 236 | 222, 94, 230, 188, 235 | isumrecl 14496 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
| 237 | | halfre 11246 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℝ |
| 238 | 237 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
| 239 | | fzssuz 12382 |
. . . . . . . . . . 11
⊢ ((𝐾 + 1)...𝑁) ⊆
(ℤ≥‘(𝐾 + 1)) |
| 240 | 239 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾 + 1)...𝑁) ⊆
(ℤ≥‘(𝐾 + 1))) |
| 241 | | nnrp 11842 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
| 242 | 241 | rpreccld 11882 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ+) |
| 243 | 242 | rpge0d 11876 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 0 ≤ (1
/ 𝑘)) |
| 244 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢ ((1 /
𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ (1 / 𝑘) ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
| 245 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑘 ∈ ℙ, (1 /
𝑘), 0) → (0 ≤ 0
↔ 0 ≤ if(𝑘 ∈
ℙ, (1 / 𝑘),
0))) |
| 246 | 244, 245 | ifboth 4124 |
. . . . . . . . . . . 12
⊢ ((0 ≤
(1 / 𝑘) ∧ 0 ≤ 0)
→ 0 ≤ if(𝑘 ∈
ℙ, (1 / 𝑘),
0)) |
| 247 | 243, 203,
246 | sylancl 694 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 0 ≤
if(𝑘 ∈ ℙ, (1 /
𝑘), 0)) |
| 248 | 183, 247 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 249 | 222, 94, 182, 240, 230, 188, 248, 235 | isumless 14577 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ≤ Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 250 | 190, 236,
238, 249, 194 | lelttrd 10195 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2)) |
| 251 | 1 | nngt0d 11064 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝑁) |
| 252 | | ltmul2 10874 |
. . . . . . . . 9
⊢
((Σ𝑘 ∈
((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ ∧ (1 / 2) ∈
ℝ ∧ (𝑁 ∈
ℝ ∧ 0 < 𝑁))
→ (Σ𝑘 ∈
((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))) |
| 253 | 190, 238,
2, 251, 252 | syl112anc 1330 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))) |
| 254 | 250, 253 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))) |
| 255 | | 2cn 11091 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
| 256 | | 2ne0 11113 |
. . . . . . . . 9
⊢ 2 ≠
0 |
| 257 | | divrec 10701 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (𝑁 / 2) = (𝑁 · (1 / 2))) |
| 258 | 255, 256,
257 | mp3an23 1416 |
. . . . . . . 8
⊢ (𝑁 ∈ ℂ → (𝑁 / 2) = (𝑁 · (1 / 2))) |
| 259 | 24, 258 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2))) |
| 260 | 254, 259 | breqtrrd 4681 |
. . . . . 6
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 / 2)) |
| 261 | 181, 191,
3, 221, 260 | lelttrd 10195 |
. . . . 5
⊢ (𝜑 → (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) < (𝑁 / 2)) |
| 262 | 181, 3, 13, 261 | ltadd2dd 10196 |
. . . 4
⊢ (𝜑 → ((#‘𝑀) + (#‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) < ((#‘𝑀) + (𝑁 / 2))) |
| 263 | 178, 262 | eqbrtrd 4675 |
. . 3
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) < ((#‘𝑀) + (𝑁 / 2))) |
| 264 | 3, 13, 3 | ltadd1d 10620 |
. . 3
⊢ (𝜑 → ((𝑁 / 2) < (#‘𝑀) ↔ ((𝑁 / 2) + (𝑁 / 2)) < ((#‘𝑀) + (𝑁 / 2)))) |
| 265 | 263, 264 | mpbird 247 |
. 2
⊢ (𝜑 → (𝑁 / 2) < (#‘𝑀)) |
| 266 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑘 = 𝑟 → (𝑘↑2) = (𝑟↑2)) |
| 267 | 266 | breq1d 4663 |
. . . . . . 7
⊢ (𝑘 = 𝑟 → ((𝑘↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑥)) |
| 268 | 267 | cbvrabv 3199 |
. . . . . 6
⊢ {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} |
| 269 | | breq2 4657 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝑟↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑛)) |
| 270 | 269 | rabbidv 3189 |
. . . . . 6
⊢ (𝑥 = 𝑛 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}) |
| 271 | 268, 270 | syl5eq 2668 |
. . . . 5
⊢ (𝑥 = 𝑛 → {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}) |
| 272 | 271 | supeq1d 8352 |
. . . 4
⊢ (𝑥 = 𝑛 → sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < )) |
| 273 | 272 | cbvmptv 4750 |
. . 3
⊢ (𝑥 ∈ ℕ ↦
sup({𝑘 ∈ ℕ
∣ (𝑘↑2) ∥
𝑥}, ℝ, < )) =
(𝑛 ∈ ℕ ↦
sup({𝑟 ∈ ℕ
∣ (𝑟↑2) ∥
𝑛}, ℝ, <
)) |
| 274 | 192, 15, 1, 5, 273 | prmreclem3 15622 |
. 2
⊢ (𝜑 → (#‘𝑀) ≤ ((2↑𝐾) · (√‘𝑁))) |
| 275 | 3, 13, 23, 265, 274 | ltletrd 10197 |
1
⊢ (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁))) |