MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmsubglem Structured version   Visualization version   GIF version

Theorem cnmsubglem 19809
Description: Lemma for rpmsubg 19810 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cnmgpabl.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
cnmsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnmsubglem.2 (𝑥𝐴𝑥 ≠ 0)
cnmsubglem.3 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
cnmsubglem.4 1 ∈ 𝐴
cnmsubglem.5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
Assertion
Ref Expression
cnmsubglem 𝐴 ∈ (SubGrp‘𝑀)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑀,𝑦

Proof of Theorem cnmsubglem
StepHypRef Expression
1 cnmsubglem.1 . . . 4 (𝑥𝐴𝑥 ∈ ℂ)
2 cnmsubglem.2 . . . 4 (𝑥𝐴𝑥 ≠ 0)
3 eldifsn 4317 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
41, 2, 3sylanbrc 698 . . 3 (𝑥𝐴𝑥 ∈ (ℂ ∖ {0}))
54ssriv 3607 . 2 𝐴 ⊆ (ℂ ∖ {0})
6 cnmsubglem.4 . . 3 1 ∈ 𝐴
76ne0ii 3923 . 2 𝐴 ≠ ∅
8 cnmsubglem.3 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
98ralrimiva 2966 . . . 4 (𝑥𝐴 → ∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
10 cnfldinv 19777 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
111, 2, 10syl2anc 693 . . . . 5 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
12 cnmsubglem.5 . . . . 5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
1311, 12eqeltrd 2701 . . . 4 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
149, 13jca 554 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))
1514rgen 2922 . 2 𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
16 cnmgpabl.m . . . 4 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1716cnmgpabl 19807 . . 3 𝑀 ∈ Abel
18 ablgrp 18198 . . 3 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
19 difss 3737 . . . . 5 (ℂ ∖ {0}) ⊆ ℂ
20 eqid 2622 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
21 cnfldbas 19750 . . . . . . 7 ℂ = (Base‘ℂfld)
2220, 21mgpbas 18495 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
2316, 22ressbas2 15931 . . . . 5 ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀))
2419, 23ax-mp 5 . . . 4 (ℂ ∖ {0}) = (Base‘𝑀)
25 cnex 10017 . . . . 5 ℂ ∈ V
26 difexg 4808 . . . . 5 (ℂ ∈ V → (ℂ ∖ {0}) ∈ V)
27 cnfldmul 19752 . . . . . . 7 · = (.r‘ℂfld)
2820, 27mgpplusg 18493 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
2916, 28ressplusg 15993 . . . . 5 ((ℂ ∖ {0}) ∈ V → · = (+g𝑀))
3025, 26, 29mp2b 10 . . . 4 · = (+g𝑀)
31 cnfld0 19770 . . . . . 6 0 = (0g‘ℂfld)
32 cndrng 19775 . . . . . 6 fld ∈ DivRing
3321, 31, 32drngui 18753 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
34 eqid 2622 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
3533, 16, 34invrfval 18673 . . . 4 (invr‘ℂfld) = (invg𝑀)
3624, 30, 35issubg2 17609 . . 3 (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))))
3717, 18, 36mp2b 10 . 2 (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))
385, 7, 15, 37mpbir3an 1244 1 𝐴 ∈ (SubGrp‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  wss 3574  c0 3915  {csn 4177  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   · cmul 9941   / cdiv 10684  Basecbs 15857  s cress 15858  +gcplusg 15941  Grpcgrp 17422  SubGrpcsubg 17588  Abelcabl 18194  mulGrpcmgp 18489  invrcinvr 18671  fldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-cnfld 19747
This theorem is referenced by:  rpmsubg  19810  cnmsgnsubg  19923
  Copyright terms: Public domain W3C validator