MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cply1coe0bi Structured version   Visualization version   Unicode version

Theorem cply1coe0bi 19670
Description: A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019.)
Hypotheses
Ref Expression
cply1coe0.k  |-  K  =  ( Base `  R
)
cply1coe0.0  |-  .0.  =  ( 0g `  R )
cply1coe0.p  |-  P  =  (Poly1 `  R )
cply1coe0.b  |-  B  =  ( Base `  P
)
cply1coe0.a  |-  A  =  (algSc `  P )
Assertion
Ref Expression
cply1coe0bi  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( E. s  e.  K  M  =  ( A `  s )  <->  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  ) )
Distinct variable groups:    n, K    R, n    A, n, s    B, n, s    K, s    n, M, s    R, s    .0. , s
Allowed substitution hints:    P( n, s)    .0. ( n)

Proof of Theorem cply1coe0bi
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  R  e.  Ring )
21anim1i 592 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  s  e.  K
)  ->  ( R  e.  Ring  /\  s  e.  K ) )
32adantr 481 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  s  e.  K )  /\  M  =  ( A `  s ) )  -> 
( R  e.  Ring  /\  s  e.  K ) )
4 cply1coe0.k . . . . . . 7  |-  K  =  ( Base `  R
)
5 cply1coe0.0 . . . . . . 7  |-  .0.  =  ( 0g `  R )
6 cply1coe0.p . . . . . . 7  |-  P  =  (Poly1 `  R )
7 cply1coe0.b . . . . . . 7  |-  B  =  ( Base `  P
)
8 cply1coe0.a . . . . . . 7  |-  A  =  (algSc `  P )
94, 5, 6, 7, 8cply1coe0 19669 . . . . . 6  |-  ( ( R  e.  Ring  /\  s  e.  K )  ->  A. n  e.  NN  ( (coe1 `  ( A `  s )
) `  n )  =  .0.  )
103, 9syl 17 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  s  e.  K )  /\  M  =  ( A `  s ) )  ->  A. n  e.  NN  ( (coe1 `  ( A `  s ) ) `  n )  =  .0.  )
11 fveq2 6191 . . . . . . . . 9  |-  ( M  =  ( A `  s )  ->  (coe1 `  M )  =  (coe1 `  ( A `  s
) ) )
1211fveq1d 6193 . . . . . . . 8  |-  ( M  =  ( A `  s )  ->  (
(coe1 `  M ) `  n )  =  ( (coe1 `  ( A `  s ) ) `  n ) )
1312eqeq1d 2624 . . . . . . 7  |-  ( M  =  ( A `  s )  ->  (
( (coe1 `  M ) `  n )  =  .0.  <->  ( (coe1 `  ( A `  s ) ) `  n )  =  .0.  ) )
1413ralbidv 2986 . . . . . 6  |-  ( M  =  ( A `  s )  ->  ( A. n  e.  NN  ( (coe1 `  M ) `  n )  =  .0.  <->  A. n  e.  NN  (
(coe1 `  ( A `  s ) ) `  n )  =  .0.  ) )
1514adantl 482 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  s  e.  K )  /\  M  =  ( A `  s ) )  -> 
( A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  <->  A. n  e.  NN  ( (coe1 `  ( A `  s ) ) `  n )  =  .0.  ) )
1610, 15mpbird 247 . . . 4  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  s  e.  K )  /\  M  =  ( A `  s ) )  ->  A. n  e.  NN  ( (coe1 `  M ) `  n )  =  .0.  )
1716ex 450 . . 3  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  s  e.  K
)  ->  ( M  =  ( A `  s )  ->  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  ) )
1817rexlimdva 3031 . 2  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( E. s  e.  K  M  =  ( A `  s )  ->  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  ) )
19 simpr 477 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  M  e.  B )
20 0nn0 11307 . . . . . 6  |-  0  e.  NN0
21 eqid 2622 . . . . . . 7  |-  (coe1 `  M
)  =  (coe1 `  M
)
2221, 7, 6, 4coe1fvalcl 19582 . . . . . 6  |-  ( ( M  e.  B  /\  0  e.  NN0 )  -> 
( (coe1 `  M ) ` 
0 )  e.  K
)
2319, 20, 22sylancl 694 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
(coe1 `  M ) ` 
0 )  e.  K
)
2423adantr 481 . . . 4  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  ->  (
(coe1 `  M ) ` 
0 )  e.  K
)
25 fveq2 6191 . . . . . 6  |-  ( s  =  ( (coe1 `  M
) `  0 )  ->  ( A `  s
)  =  ( A `
 ( (coe1 `  M
) `  0 )
) )
2625eqeq2d 2632 . . . . 5  |-  ( s  =  ( (coe1 `  M
) `  0 )  ->  ( M  =  ( A `  s )  <-> 
M  =  ( A `
 ( (coe1 `  M
) `  0 )
) ) )
2726adantl 482 . . . 4  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  /\  s  =  ( (coe1 `  M
) `  0 )
)  ->  ( M  =  ( A `  s )  <->  M  =  ( A `  ( (coe1 `  M ) `  0
) ) ) )
28 eqid 2622 . . . . . . . . . 10  |-  (Scalar `  P )  =  (Scalar `  P )
296ply1ring 19618 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  P  e. 
Ring )
306ply1lmod 19622 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  P  e. 
LMod )
31 eqid 2622 . . . . . . . . . 10  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
328, 28, 29, 30, 31, 7asclf 19337 . . . . . . . . 9  |-  ( R  e.  Ring  ->  A :
( Base `  (Scalar `  P
) ) --> B )
3332adantr 481 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  A : ( Base `  (Scalar `  P ) ) --> B )
34 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
3521, 7, 6, 34coe1fvalcl 19582 . . . . . . . . . 10  |-  ( ( M  e.  B  /\  0  e.  NN0 )  -> 
( (coe1 `  M ) ` 
0 )  e.  (
Base `  R )
)
3619, 20, 35sylancl 694 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
(coe1 `  M ) ` 
0 )  e.  (
Base `  R )
)
376ply1sca 19623 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  R  =  (Scalar `  P )
)
3837eqcomd 2628 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  (Scalar `  P )  =  R )
3938fveq2d 6195 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( Base `  (Scalar `  P )
)  =  ( Base `  R ) )
4039adantr 481 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( Base `  (Scalar `  P
) )  =  (
Base `  R )
)
4136, 40eleqtrrd 2704 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
(coe1 `  M ) ` 
0 )  e.  (
Base `  (Scalar `  P
) ) )
4233, 41ffvelrnd 6360 . . . . . . 7  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( A `  ( (coe1 `  M ) `  0
) )  e.  B
)
431, 19, 423jca 1242 . . . . . 6  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( R  e.  Ring  /\  M  e.  B  /\  ( A `  ( (coe1 `  M ) `  0
) )  e.  B
) )
4443adantr 481 . . . . 5  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  ->  ( R  e.  Ring  /\  M  e.  B  /\  ( A `  ( (coe1 `  M ) `  0
) )  e.  B
) )
45 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  n  e.  NN )  /\  (
(coe1 `  M ) `  n )  =  .0.  )  ->  ( (coe1 `  M ) `  n
)  =  .0.  )
466, 8, 4, 5coe1scl 19657 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Ring  /\  (
(coe1 `  M ) ` 
0 )  e.  K
)  ->  (coe1 `  ( A `  ( (coe1 `  M ) `  0
) ) )  =  ( k  e.  NN0  |->  if ( k  =  0 ,  ( (coe1 `  M
) `  0 ) ,  .0.  ) ) )
4723, 46syldan 487 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (coe1 `  ( A `  ( (coe1 `  M ) `  0
) ) )  =  ( k  e.  NN0  |->  if ( k  =  0 ,  ( (coe1 `  M
) `  0 ) ,  .0.  ) ) )
4847adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  n  e.  NN )  ->  (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) )  =  ( k  e. 
NN0  |->  if ( k  =  0 ,  ( (coe1 `  M ) ` 
0 ) ,  .0.  ) ) )
49 nnne0 11053 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  n  =/=  0 )
5049neneqd 2799 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  -.  n  =  0 )
5150adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  n  e.  NN )  ->  -.  n  = 
0 )
5251adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  n  e.  NN )  /\  k  =  n )  ->  -.  n  =  0 )
53 eqeq1 2626 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  (
k  =  0  <->  n  =  0 ) )
5453notbid 308 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  ( -.  k  =  0  <->  -.  n  =  0 ) )
5554adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  n  e.  NN )  /\  k  =  n )  ->  ( -.  k  =  0  <->  -.  n  =  0 ) )
5652, 55mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  n  e.  NN )  /\  k  =  n )  ->  -.  k  =  0 )
5756iffalsed 4097 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  n  e.  NN )  /\  k  =  n )  ->  if ( k  =  0 ,  ( (coe1 `  M
) `  0 ) ,  .0.  )  =  .0.  )
58 nnnn0 11299 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  NN0 )
5958adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  n  e.  NN )  ->  n  e.  NN0 )
60 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( 0g
`  R )  e. 
_V
615, 60eqeltri 2697 . . . . . . . . . . . . . 14  |-  .0.  e.  _V
6261a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  n  e.  NN )  ->  .0.  e.  _V )
6348, 57, 59, 62fvmptd 6288 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  n  e.  NN )  ->  ( (coe1 `  ( A `  ( (coe1 `  M ) `  0
) ) ) `  n )  =  .0.  )
6463eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  n  e.  NN )  ->  .0.  =  (
(coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n ) )
6564adantr 481 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  n  e.  NN )  /\  (
(coe1 `  M ) `  n )  =  .0.  )  ->  .0.  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n ) )
6645, 65eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  n  e.  NN )  /\  (
(coe1 `  M ) `  n )  =  .0.  )  ->  ( (coe1 `  M ) `  n
)  =  ( (coe1 `  ( A `  (
(coe1 `  M ) ` 
0 ) ) ) `
 n ) )
6766ex 450 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  n  e.  NN )  ->  ( ( (coe1 `  M ) `  n
)  =  .0.  ->  ( (coe1 `  M ) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n ) ) )
6867ralimdva 2962 . . . . . . 7  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( A. n  e.  NN  ( (coe1 `  M ) `  n )  =  .0. 
->  A. n  e.  NN  ( (coe1 `  M ) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n ) ) )
6968imp 445 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  ->  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) `  0
) ) ) `  n ) )
706, 8, 4ply1sclid 19658 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
(coe1 `  M ) ` 
0 )  e.  K
)  ->  ( (coe1 `  M ) `  0
)  =  ( (coe1 `  ( A `  (
(coe1 `  M ) ` 
0 ) ) ) `
 0 ) )
7123, 70syldan 487 . . . . . . 7  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  (
(coe1 `  M ) ` 
0 )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 0 ) )
7271adantr 481 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  ->  (
(coe1 `  M ) ` 
0 )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 0 ) )
73 df-n0 11293 . . . . . . . 8  |-  NN0  =  ( NN  u.  { 0 } )
7473raleqi 3142 . . . . . . 7  |-  ( A. n  e.  NN0  ( (coe1 `  M ) `  n
)  =  ( (coe1 `  ( A `  (
(coe1 `  M ) ` 
0 ) ) ) `
 n )  <->  A. n  e.  ( NN  u.  {
0 } ) ( (coe1 `  M ) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n ) )
75 c0ex 10034 . . . . . . . 8  |-  0  e.  _V
76 fveq2 6191 . . . . . . . . . 10  |-  ( n  =  0  ->  (
(coe1 `  M ) `  n )  =  ( (coe1 `  M ) ` 
0 ) )
77 fveq2 6191 . . . . . . . . . 10  |-  ( n  =  0  ->  (
(coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 0 ) )
7876, 77eqeq12d 2637 . . . . . . . . 9  |-  ( n  =  0  ->  (
( (coe1 `  M ) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n )  <->  ( (coe1 `  M ) `  0
)  =  ( (coe1 `  ( A `  (
(coe1 `  M ) ` 
0 ) ) ) `
 0 ) ) )
7978ralunsn 4422 . . . . . . . 8  |-  ( 0  e.  _V  ->  ( A. n  e.  ( NN  u.  { 0 } ) ( (coe1 `  M
) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) `  0
) ) ) `  n )  <->  ( A. n  e.  NN  (
(coe1 `  M ) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n )  /\  ( (coe1 `  M ) ` 
0 )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 0 ) ) ) )
8075, 79mp1i 13 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  ->  ( A. n  e.  ( NN  u.  { 0 } ) ( (coe1 `  M
) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) `  0
) ) ) `  n )  <->  ( A. n  e.  NN  (
(coe1 `  M ) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n )  /\  ( (coe1 `  M ) ` 
0 )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 0 ) ) ) )
8174, 80syl5bb 272 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  ->  ( A. n  e.  NN0  ( (coe1 `  M ) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n )  <->  ( A. n  e.  NN  (
(coe1 `  M ) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 n )  /\  ( (coe1 `  M ) ` 
0 )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) `
 0 ) ) ) )
8269, 72, 81mpbir2and 957 . . . . 5  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  ->  A. n  e.  NN0  ( (coe1 `  M
) `  n )  =  ( (coe1 `  ( A `  ( (coe1 `  M ) `  0
) ) ) `  n ) )
83 eqid 2622 . . . . . 6  |-  (coe1 `  ( A `  ( (coe1 `  M ) `  0
) ) )  =  (coe1 `  ( A `  ( (coe1 `  M ) ` 
0 ) ) )
846, 7, 21, 83eqcoe1ply1eq 19667 . . . . 5  |-  ( ( R  e.  Ring  /\  M  e.  B  /\  ( A `  ( (coe1 `  M ) `  0
) )  e.  B
)  ->  ( A. n  e.  NN0  ( (coe1 `  M ) `  n
)  =  ( (coe1 `  ( A `  (
(coe1 `  M ) ` 
0 ) ) ) `
 n )  ->  M  =  ( A `  ( (coe1 `  M ) ` 
0 ) ) ) )
8544, 82, 84sylc 65 . . . 4  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  ->  M  =  ( A `  ( (coe1 `  M ) ` 
0 ) ) )
8624, 27, 85rspcedvd 3317 . . 3  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  )  ->  E. s  e.  K  M  =  ( A `  s ) )
8786ex 450 . 2  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( A. n  e.  NN  ( (coe1 `  M ) `  n )  =  .0. 
->  E. s  e.  K  M  =  ( A `  s ) ) )
8818, 87impbid 202 1  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( E. s  e.  K  M  =  ( A `  s )  <->  A. n  e.  NN  ( (coe1 `  M
) `  n )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572   ifcif 4086   {csn 4177    |-> cmpt 4729   -->wf 5884   ` cfv 5888   0cc0 9936   NNcn 11020   NN0cn0 11292   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   Ringcrg 18547  algSccascl 19311  Poly1cpl1 19547  coe1cco1 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553
This theorem is referenced by:  cpmatel2  20518
  Copyright terms: Public domain W3C validator