Step | Hyp | Ref
| Expression |
1 | | decpmatmulsumfsupp.0 |
. . . 4
     |
2 | | fvex 6201 |
. . . 4
     |
3 | 1, 2 | eqeltri 2697 |
. . 3
 |
4 | 3 | a1i 11 |
. 2
    
    |
5 | | ovexd 6680 |
. 2
   
   
  g        decompPMat   decompPMat         |
6 | | oveq2 6658 |
. . . 4
           |
7 | | oveq1 6657 |
. . . . . 6
       |
8 | 7 | oveq2d 6666 |
. . . . 5
  decompPMat     decompPMat      |
9 | 8 | oveq2d 6666 |
. . . 4
  
decompPMat  
decompPMat       decompPMat   decompPMat       |
10 | 6, 9 | mpteq12dv 4733 |
. . 3
        decompPMat
  decompPMat
            decompPMat
  decompPMat
       |
11 | 10 | oveq2d 6666 |
. 2
  g        decompPMat   decompPMat        g        decompPMat   decompPMat         |
12 | | simpll 790 |
. . . . 5
    
    |
13 | | simplr 792 |
. . . . 5
    
    |
14 | | decpmatmul.p |
. . . . . . . . 9
Poly1   |
15 | | decpmatmul.c |
. . . . . . . . 9
 Mat   |
16 | 14, 15 | pmatring 20498 |
. . . . . . . 8
 

  |
17 | 16 | anim1i 592 |
. . . . . . 7
    
  

    |
18 | | 3anass 1042 |
. . . . . . 7
 



    |
19 | 17, 18 | sylibr 224 |
. . . . . 6
    
  
   |
20 | | decpmatmul.b |
. . . . . . 7
     |
21 | | eqid 2622 |
. . . . . . 7
         |
22 | 20, 21 | ringcl 18561 |
. . . . . 6
 
           |
23 | 19, 22 | syl 17 |
. . . . 5
    
            |
24 | | eqid 2622 |
. . . . . 6
         |
25 | 14, 15, 20, 24 | pmatcoe1fsupp 20506 |
. . . . 5
 
         
 
 
 coe1                        |
26 | 12, 13, 23, 25 | syl3anc 1326 |
. . . 4
    
    


 coe1                        |
27 | | oveq1 6657 |
. . . . . . . . . . . . . . . . 17
                           |
28 | 27 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
 coe1              coe1                |
29 | 28 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
  coe1                  coe1                   |
30 | 29 | eqeq1d 2624 |
. . . . . . . . . . . . . 14
   coe1                      coe1                        |
31 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
                           |
32 | 31 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
 coe1              coe1                |
33 | 32 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
  coe1                  coe1                   |
34 | 33 | eqeq1d 2624 |
. . . . . . . . . . . . . 14
   coe1                      coe1                        |
35 | 30, 34 | rspc2va 3323 |
. . . . . . . . . . . . 13
  



 coe1                       coe1                       |
36 | 35 | expcom 451 |
. . . . . . . . . . . 12
 

 coe1                         coe1                        |
37 | 36 | adantl 482 |
. . . . . . . . . . 11
      
 
 

 coe1                          coe1                        |
38 | 37 | 3impib 1262 |
. . . . . . . . . 10
     
 
   

 coe1                        coe1                       |
39 | 38 | mpt2eq3dva 6719 |
. . . . . . . . 9
      
 
 

 coe1                         coe1                           |
40 | | decpmatmul.a |
. . . . . . . . . . . 12
 Mat   |
41 | 40, 24 | mat0op 20225 |
. . . . . . . . . . 11
 
              |
42 | 1, 41 | syl5eq 2668 |
. . . . . . . . . 10
 
          |
43 | 42 | ad3antrrr 766 |
. . . . . . . . 9
      
 
 

 coe1                     
         |
44 | 39, 43 | eqtr4d 2659 |
. . . . . . . 8
      
 
 

 coe1                         coe1                   |
45 | 44 | ex 450 |
. . . . . . 7
   
   
     coe1                        coe1                    |
46 | 45 | imim2d 57 |
. . . . . 6
   
   
  


 coe1                      
   coe1                     |
47 | 46 | ralimdva 2962 |
. . . . 5
    
   
  
 coe1                     
 
   coe1                     |
48 | 47 | reximdv 3016 |
. . . 4
    
   
 
 
 coe1                     
  
   coe1                     |
49 | 26, 48 | mpd 15 |
. . 3
    
    
   coe1                    |
50 | | decpmatmulsumfsupp.m |
. . . . . . . . . . . 12
     |
51 | 50 | oveqi 6663 |
. . . . . . . . . . 11
  decompPMat   decompPMat       decompPMat         decompPMat      |
52 | 51 | a1i 11 |
. . . . . . . . . 10
   
   
   decompPMat   decompPMat       decompPMat
        decompPMat       |
53 | 52 | mpteq2dv 4745 |
. . . . . . . . 9
   
   
        decompPMat   decompPMat             decompPMat         decompPMat        |
54 | 53 | oveq2d 6666 |
. . . . . . . 8
   
   
  g        decompPMat   decompPMat        g        decompPMat         decompPMat         |
55 | | simpllr 799 |
. . . . . . . . 9
   
   

  |
56 | | simplr 792 |
. . . . . . . . 9
   
   
 
   |
57 | | simpr 477 |
. . . . . . . . 9
   
   

  |
58 | 14, 15, 20, 40 | decpmatmul 20577 |
. . . . . . . . 9
  

          decompPMat   g        decompPMat         decompPMat         |
59 | 55, 56, 57, 58 | syl3anc 1326 |
. . . . . . . 8
   
   
          decompPMat
  g        decompPMat         decompPMat         |
60 | 15, 20 | decpmatval 20570 |
. . . . . . . . 9
         
          decompPMat
    coe1                    |
61 | 23, 60 | sylan 488 |
. . . . . . . 8
   
   
          decompPMat
    coe1                    |
62 | 54, 59, 61 | 3eqtr2d 2662 |
. . . . . . 7
   
   
  g        decompPMat   decompPMat          coe1                    |
63 | 62 | eqeq1d 2624 |
. . . . . 6
   
   
   g        decompPMat   decompPMat      
   coe1                    |
64 | 63 | imbi2d 330 |
. . . . 5
   
   
  
 g        decompPMat
  decompPMat
     

   coe1                     |
65 | 64 | ralbidva 2985 |
. . . 4
    
   
  g        decompPMat   decompPMat      
 
   coe1                     |
66 | 65 | rexbidv 3052 |
. . 3
    
   
 
 g        decompPMat   decompPMat      
  
   coe1                     |
67 | 49, 66 | mpbird 247 |
. 2
    
    
 g        decompPMat
  decompPMat
        |
68 | 4, 5, 11, 67 | mptnn0fsuppd 12798 |
1
    
    g        decompPMat   decompPMat        finSupp
 |