| Step | Hyp | Ref
| Expression |
| 1 | | deg1z.d |
. . . 4
⊢ 𝐷 = ( deg1
‘𝑅) |
| 2 | 1 | deg1fval 23840 |
. . 3
⊢ 𝐷 = (1𝑜 mDeg
𝑅) |
| 3 | | eqid 2622 |
. . 3
⊢
(1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) |
| 4 | | deg1z.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 5 | | eqid 2622 |
. . . 4
⊢
(PwSer1‘𝑅) = (PwSer1‘𝑅) |
| 6 | | deg1nn0cl.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
| 7 | 4, 5, 6 | ply1bas 19565 |
. . 3
⊢ 𝐵 =
(Base‘(1𝑜 mPoly 𝑅)) |
| 8 | | deg1ldg.y |
. . 3
⊢ 𝑌 = (0g‘𝑅) |
| 9 | | psr1baslem 19555 |
. . 3
⊢
(ℕ0 ↑𝑚 1𝑜) =
{𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ∣
(◡𝑐 “ ℕ) ∈
Fin} |
| 10 | | tdeglem2 23821 |
. . 3
⊢ (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦
(ℂfld Σg 𝑎)) |
| 11 | | deg1z.z |
. . . 4
⊢ 0 =
(0g‘𝑃) |
| 12 | 3, 4, 11 | ply1mpl0 19625 |
. . 3
⊢ 0 =
(0g‘(1𝑜 mPoly 𝑅)) |
| 13 | 2, 3, 7, 8, 9, 10,
12 | mdegldg 23826 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹))) |
| 14 | | deg1ldg.a |
. . . . . . . . . . 11
⊢ 𝐴 = (coe1‘𝐹) |
| 15 | 14 | fvcoe1 19577 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (𝐹‘𝑏) = (𝐴‘(𝑏‘∅))) |
| 16 | 15 | 3ad2antl2 1224 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (𝐹‘𝑏) = (𝐴‘(𝑏‘∅))) |
| 17 | | fveq1 6190 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (𝑎‘∅) = (𝑏‘∅)) |
| 18 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)) |
| 19 | | fvex 6201 |
. . . . . . . . . . . 12
⊢ (𝑏‘∅) ∈
V |
| 20 | 17, 18, 19 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (ℕ0
↑𝑚 1𝑜) → ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝑏‘∅)) |
| 21 | 20 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (ℕ0
↑𝑚 1𝑜) → (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅))) |
| 22 | 21 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅))) |
| 23 | 16, 22 | eqtr4d 2659 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (𝐹‘𝑏) = (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏))) |
| 24 | 23 | neeq1d 2853 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → ((𝐹‘𝑏) ≠ 𝑌 ↔ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)) |
| 25 | 24 | anbi1d 741 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ ((𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)))) |
| 26 | | ancom 466 |
. . . . . 6
⊢ (((𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)) |
| 27 | 25, 26 | syl6bb 276 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌))) |
| 28 | 27 | rexbidva 3049 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ ∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)(((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌))) |
| 29 | | df1o2 7572 |
. . . . . 6
⊢
1𝑜 = {∅} |
| 30 | | nn0ex 11298 |
. . . . . 6
⊢
ℕ0 ∈ V |
| 31 | | 0ex 4790 |
. . . . . 6
⊢ ∅
∈ V |
| 32 | 29, 30, 31, 18 | mapsnf1o2 7905 |
. . . . 5
⊢ (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 |
| 33 | | f1ofo 6144 |
. . . . 5
⊢ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 → (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0) |
| 34 | | eqeq1 2626 |
. . . . . . 7
⊢ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ↔ 𝑑 = (𝐷‘𝐹))) |
| 35 | | fveq2 6191 |
. . . . . . . 8
⊢ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘𝑑)) |
| 36 | 35 | neeq1d 2853 |
. . . . . . 7
⊢ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ↔ (𝐴‘𝑑) ≠ 𝑌)) |
| 37 | 34, 36 | anbi12d 747 |
. . . . . 6
⊢ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ (𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌))) |
| 38 | 37 | cbvexfo 6545 |
. . . . 5
⊢ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0 → (∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)(((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌))) |
| 39 | 32, 33, 38 | mp2b 10 |
. . . 4
⊢
(∃𝑏 ∈
(ℕ0 ↑𝑚 1𝑜)(((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌)) |
| 40 | 28, 39 | syl6bb 276 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌))) |
| 41 | 1, 4, 11, 6 | deg1nn0cl 23848 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈
ℕ0) |
| 42 | | fveq2 6191 |
. . . . . 6
⊢ (𝑑 = (𝐷‘𝐹) → (𝐴‘𝑑) = (𝐴‘(𝐷‘𝐹))) |
| 43 | 42 | neeq1d 2853 |
. . . . 5
⊢ (𝑑 = (𝐷‘𝐹) → ((𝐴‘𝑑) ≠ 𝑌 ↔ (𝐴‘(𝐷‘𝐹)) ≠ 𝑌)) |
| 44 | 43 | ceqsrexv 3336 |
. . . 4
⊢ ((𝐷‘𝐹) ∈ ℕ0 →
(∃𝑑 ∈
ℕ0 (𝑑 =
(𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷‘𝐹)) ≠ 𝑌)) |
| 45 | 41, 44 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑑 ∈ ℕ0
(𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷‘𝐹)) ≠ 𝑌)) |
| 46 | 40, 45 | bitrd 268 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ (𝐴‘(𝐷‘𝐹)) ≠ 𝑌)) |
| 47 | 13, 46 | mpbid 222 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) |