MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres Structured version   Visualization version   GIF version

Theorem dvres 23675
Description: Restriction of a derivative. Note that our definition of derivative df-dv 23631 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
Assertion
Ref Expression
dvres (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))

Proof of Theorem dvres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldv 23634 . 2 Rel (𝑆 D (𝐹𝐵))
2 relres 5426 . 2 Rel ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))
3 simpll 790 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝑆 ⊆ ℂ)
4 simplr 792 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐹:𝐴⟶ℂ)
5 inss1 3833 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
6 fssres 6070 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
74, 5, 6sylancl 694 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
8 resres 5409 . . . . . . . . 9 ((𝐹𝐴) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵))
9 ffn 6045 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
10 fnresdm 6000 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
114, 9, 103syl 18 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐴) = 𝐹)
1211reseq1d 5395 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹𝐴) ↾ 𝐵) = (𝐹𝐵))
138, 12syl5eqr 2670 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)) = (𝐹𝐵))
1413feq1d 6030 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ ↔ (𝐹𝐵):(𝐴𝐵)⟶ℂ))
157, 14mpbid 222 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
16 simprl 794 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐴𝑆)
175, 16syl5ss 3614 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐵) ⊆ 𝑆)
183, 15, 17dvcl 23663 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D (𝐹𝐵))𝑦) → 𝑦 ∈ ℂ)
1918ex 450 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑦 ∈ ℂ))
203, 4, 16dvcl 23663 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
2120ex 450 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
2221adantrd 484 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)) → 𝑦 ∈ ℂ))
23 dvres.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
24 dvres.t . . . . . 6 𝑇 = (𝐾t 𝑆)
25 eqid 2622 . . . . . 6 (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
263adantr 481 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑆 ⊆ ℂ)
274adantr 481 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐹:𝐴⟶ℂ)
2816adantr 481 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐴𝑆)
29 simplrr 801 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐵𝑆)
30 simpr 477 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
3123, 24, 25, 26, 27, 28, 29, 30dvreslem 23673 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
3231ex 450 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑦 ∈ ℂ → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)))))
3319, 22, 32pm5.21ndd 369 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
34 vex 3203 . . . 4 𝑦 ∈ V
3534brres 5402 . . 3 (𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)))
3633, 35syl6bbr 278 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦))
371, 2, 36eqbrrdiv 5218 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cdif 3571  cin 3573  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cmin 10266   / cdiv 10684  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  intcnt 20821   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvcmulf  23708  dvmptres2  23725  dvmptntr  23734  dvlip  23756  dvlipcn  23757  dvlip2  23758  c1liplem1  23759  dvgt0lem1  23765  dvne0  23774  lhop1lem  23776  lhop  23779  dvcnvrelem1  23780  dvcvx  23783  ftc2ditglem  23808  pserdv  24183  efcvx  24203  dvlog  24397  dvlog2  24399  ftc2re  30676  dvresntr  40132  dvmptresicc  40134  dvresioo  40136  dvbdfbdioolem1  40143  itgcoscmulx  40185  itgiccshift  40196  itgperiod  40197  dirkercncflem2  40321  fourierdlem57  40380  fourierdlem58  40381  fourierdlem72  40395  fourierdlem73  40396  fourierdlem74  40397  fourierdlem75  40398  fourierdlem80  40403  fourierdlem94  40417  fourierdlem103  40426  fourierdlem104  40427  fourierdlem113  40436
  Copyright terms: Public domain W3C validator