MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgh Structured version   Visualization version   GIF version

Theorem efgh 24287
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypothesis
Ref Expression
efgh.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
Assertion
Ref Expression
efgh (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem efgh
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1085 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐴 ∈ ℂ)
2 simp1r 1086 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ∈ (SubGrp‘ℂfld))
3 cnfldbas 19750 . . . . . . . 8 ℂ = (Base‘ℂfld)
43subgss 17595 . . . . . . 7 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
52, 4syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ⊆ ℂ)
6 simp2 1062 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵𝑋)
75, 6sseldd 3604 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵 ∈ ℂ)
8 simp3 1063 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶𝑋)
95, 8sseldd 3604 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶 ∈ ℂ)
101, 7, 9adddid 10064 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1110fveq2d 6195 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))))
121, 7mulcld 10060 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐵) ∈ ℂ)
131, 9mulcld 10060 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ ℂ)
14 efadd 14824 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1512, 13, 14syl2anc 693 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1611, 15eqtrd 2656 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
17 efgh.1 . . . . 5 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
18 oveq2 6658 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
1918fveq2d 6195 . . . . . 6 (𝑥 = 𝑦 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 𝑦)))
2019cbvmptv 4750 . . . . 5 (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
2117, 20eqtri 2644 . . . 4 𝐹 = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
2221a1i 11 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐹 = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦))))
23 oveq2 6658 . . . . 5 (𝑦 = (𝐵 + 𝐶) → (𝐴 · 𝑦) = (𝐴 · (𝐵 + 𝐶)))
2423fveq2d 6195 . . . 4 (𝑦 = (𝐵 + 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
2524adantl 482 . . 3 ((((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) ∧ 𝑦 = (𝐵 + 𝐶)) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
26 cnfldadd 19751 . . . . 5 + = (+g‘ℂfld)
2726subgcl 17604 . . . 4 ((𝑋 ∈ (SubGrp‘ℂfld) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
28273adant1l 1318 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
29 fvexd 6203 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) ∈ V)
3022, 25, 28, 29fvmptd 6288 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
31 oveq2 6658 . . . . . 6 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
3231fveq2d 6195 . . . . 5 (𝑦 = 𝐵 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵)))
3332adantl 482 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) ∧ 𝑦 = 𝐵) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵)))
34 fvexd 6203 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐵)) ∈ V)
3522, 33, 6, 34fvmptd 6288 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐵) = (exp‘(𝐴 · 𝐵)))
36 oveq2 6658 . . . . . 6 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
3736fveq2d 6195 . . . . 5 (𝑦 = 𝐶 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶)))
3837adantl 482 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) ∧ 𝑦 = 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶)))
39 fvexd 6203 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐶)) ∈ V)
4022, 38, 8, 39fvmptd 6288 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐶) = (exp‘(𝐴 · 𝐶)))
4135, 40oveq12d 6668 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → ((𝐹𝐵) · (𝐹𝐶)) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
4216, 30, 413eqtr4d 2666 1 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934   + caddc 9939   · cmul 9941  expce 14792  SubGrpcsubg 17588  fldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-cnfld 19747
This theorem is referenced by:  efabl  24296
  Copyright terms: Public domain W3C validator