MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgh Structured version   Visualization version   Unicode version

Theorem efgh 24287
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypothesis
Ref Expression
efgh.1  |-  F  =  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )
Assertion
Ref Expression
efgh  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( F `  ( B  +  C
) )  =  ( ( F `  B
)  x.  ( F `
 C ) ) )
Distinct variable groups:    x, A    x, X
Allowed substitution hints:    B( x)    C( x)    F( x)

Proof of Theorem efgh
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp1l 1085 . . . . 5  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  A  e.  CC )
2 simp1r 1086 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  X  e.  (SubGrp ` fld ) )
3 cnfldbas 19750 . . . . . . . 8  |-  CC  =  ( Base ` fld )
43subgss 17595 . . . . . . 7  |-  ( X  e.  (SubGrp ` fld )  ->  X  C_  CC )
52, 4syl 17 . . . . . 6  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  X  C_  CC )
6 simp2 1062 . . . . . 6  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  B  e.  X )
75, 6sseldd 3604 . . . . 5  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  B  e.  CC )
8 simp3 1063 . . . . . 6  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  C  e.  X )
95, 8sseldd 3604 . . . . 5  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  C  e.  CC )
101, 7, 9adddid 10064 . . . 4  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( A  x.  ( B  +  C
) )  =  ( ( A  x.  B
)  +  ( A  x.  C ) ) )
1110fveq2d 6195 . . 3  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( exp `  ( A  x.  ( B  +  C )
) )  =  ( exp `  ( ( A  x.  B )  +  ( A  x.  C ) ) ) )
121, 7mulcld 10060 . . . 4  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( A  x.  B )  e.  CC )
131, 9mulcld 10060 . . . 4  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( A  x.  C )  e.  CC )
14 efadd 14824 . . . 4  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( A  x.  C
)  e.  CC )  ->  ( exp `  (
( A  x.  B
)  +  ( A  x.  C ) ) )  =  ( ( exp `  ( A  x.  B ) )  x.  ( exp `  ( A  x.  C )
) ) )
1512, 13, 14syl2anc 693 . . 3  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( exp `  ( ( A  x.  B )  +  ( A  x.  C ) ) )  =  ( ( exp `  ( A  x.  B )
)  x.  ( exp `  ( A  x.  C
) ) ) )
1611, 15eqtrd 2656 . 2  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( exp `  ( A  x.  ( B  +  C )
) )  =  ( ( exp `  ( A  x.  B )
)  x.  ( exp `  ( A  x.  C
) ) ) )
17 efgh.1 . . . . 5  |-  F  =  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )
18 oveq2 6658 . . . . . . 7  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
1918fveq2d 6195 . . . . . 6  |-  ( x  =  y  ->  ( exp `  ( A  x.  x ) )  =  ( exp `  ( A  x.  y )
) )
2019cbvmptv 4750 . . . . 5  |-  ( x  e.  X  |->  ( exp `  ( A  x.  x
) ) )  =  ( y  e.  X  |->  ( exp `  ( A  x.  y )
) )
2117, 20eqtri 2644 . . . 4  |-  F  =  ( y  e.  X  |->  ( exp `  ( A  x.  y )
) )
2221a1i 11 . . 3  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  F  =  ( y  e.  X  |->  ( exp `  ( A  x.  y )
) ) )
23 oveq2 6658 . . . . 5  |-  ( y  =  ( B  +  C )  ->  ( A  x.  y )  =  ( A  x.  ( B  +  C
) ) )
2423fveq2d 6195 . . . 4  |-  ( y  =  ( B  +  C )  ->  ( exp `  ( A  x.  y ) )  =  ( exp `  ( A  x.  ( B  +  C ) ) ) )
2524adantl 482 . . 3  |-  ( ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld ) )  /\  B  e.  X  /\  C  e.  X )  /\  y  =  ( B  +  C ) )  -> 
( exp `  ( A  x.  y )
)  =  ( exp `  ( A  x.  ( B  +  C )
) ) )
26 cnfldadd 19751 . . . . 5  |-  +  =  ( +g  ` fld )
2726subgcl 17604 . . . 4  |-  ( ( X  e.  (SubGrp ` fld )  /\  B  e.  X  /\  C  e.  X
)  ->  ( B  +  C )  e.  X
)
28273adant1l 1318 . . 3  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( B  +  C )  e.  X
)
29 fvexd 6203 . . 3  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( exp `  ( A  x.  ( B  +  C )
) )  e.  _V )
3022, 25, 28, 29fvmptd 6288 . 2  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( F `  ( B  +  C
) )  =  ( exp `  ( A  x.  ( B  +  C ) ) ) )
31 oveq2 6658 . . . . . 6  |-  ( y  =  B  ->  ( A  x.  y )  =  ( A  x.  B ) )
3231fveq2d 6195 . . . . 5  |-  ( y  =  B  ->  ( exp `  ( A  x.  y ) )  =  ( exp `  ( A  x.  B )
) )
3332adantl 482 . . . 4  |-  ( ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld ) )  /\  B  e.  X  /\  C  e.  X )  /\  y  =  B )  ->  ( exp `  ( A  x.  y ) )  =  ( exp `  ( A  x.  B )
) )
34 fvexd 6203 . . . 4  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( exp `  ( A  x.  B
) )  e.  _V )
3522, 33, 6, 34fvmptd 6288 . . 3  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( F `  B )  =  ( exp `  ( A  x.  B ) ) )
36 oveq2 6658 . . . . . 6  |-  ( y  =  C  ->  ( A  x.  y )  =  ( A  x.  C ) )
3736fveq2d 6195 . . . . 5  |-  ( y  =  C  ->  ( exp `  ( A  x.  y ) )  =  ( exp `  ( A  x.  C )
) )
3837adantl 482 . . . 4  |-  ( ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld ) )  /\  B  e.  X  /\  C  e.  X )  /\  y  =  C )  ->  ( exp `  ( A  x.  y ) )  =  ( exp `  ( A  x.  C )
) )
39 fvexd 6203 . . . 4  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( exp `  ( A  x.  C
) )  e.  _V )
4022, 38, 8, 39fvmptd 6288 . . 3  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( F `  C )  =  ( exp `  ( A  x.  C ) ) )
4135, 40oveq12d 6668 . 2  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( ( F `  B )  x.  ( F `  C
) )  =  ( ( exp `  ( A  x.  B )
)  x.  ( exp `  ( A  x.  C
) ) ) )
4216, 30, 413eqtr4d 2666 1  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  B  e.  X  /\  C  e.  X
)  ->  ( F `  ( B  +  C
) )  =  ( ( F `  B
)  x.  ( F `
 C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939    x. cmul 9941   expce 14792  SubGrpcsubg 17588  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-cnfld 19747
This theorem is referenced by:  efabl  24296
  Copyright terms: Public domain W3C validator