![]() |
Metamath
Proof Explorer Theorem List (p. 243 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | reeff1o 24201 | The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | ||
Theorem | reefiso 24202 | The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.) |
⊢ (exp ↾ ℝ) Isom < , < (ℝ, ℝ+) | ||
Theorem | efcvx 24203 | The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵)))) | ||
Theorem | reefgim 24204 | The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) ⇒ ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) | ||
Theorem | pilem1 24205 | Lemma for pire 24210, pigt2lt4 24208 and sinpi 24209. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0)) | ||
Theorem | pilem2 24206 | Lemma for pire 24210, pigt2lt4 24208 and sinpi 24209. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ (2(,)4)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (sin‘𝐴) = 0) & ⊢ (𝜑 → (sin‘𝐵) = 0) & ⊢ (𝜑 → π < 𝐴) ⇒ ⊢ (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵) | ||
Theorem | pilem3 24207 | Lemma for pire 24210, pigt2lt4 24208 and sinpi 24209. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ (π ∈ (2(,)4) ∧ (sin‘π) = 0) | ||
Theorem | pigt2lt4 24208 | π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ (2 < π ∧ π < 4) | ||
Theorem | sinpi 24209 | The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘π) = 0 | ||
Theorem | pire 24210 | π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ π ∈ ℝ | ||
Theorem | picn 24211 | π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ π ∈ ℂ | ||
Theorem | pipos 24212 | π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ 0 < π | ||
Theorem | pirp 24213 | π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ π ∈ ℝ+ | ||
Theorem | negpicn 24214 | -π is a real number (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -π ∈ ℂ | ||
Theorem | sinhalfpilem 24215 | Lemma for sinhalfpi 24220 and coshalfpi 24221. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0) | ||
Theorem | halfpire 24216 | π / 2 is real. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (π / 2) ∈ ℝ | ||
Theorem | neghalfpire 24217 | -π / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -(π / 2) ∈ ℝ | ||
Theorem | neghalfpirx 24218 | -π / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -(π / 2) ∈ ℝ* | ||
Theorem | pidiv2halves 24219 | Adding π / 2 to itself is π (common case). See 2halves 11260. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ ((π / 2) + (π / 2)) = π | ||
Theorem | sinhalfpi 24220 | The sine of π / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘(π / 2)) = 1 | ||
Theorem | coshalfpi 24221 | The cosine of π / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘(π / 2)) = 0 | ||
Theorem | cosneghalfpi 24222 | The cosine of -π / 2 is zero. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (cos‘-(π / 2)) = 0 | ||
Theorem | efhalfpi 24223 | The exponential of iπ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (exp‘(i · (π / 2))) = i | ||
Theorem | cospi 24224 | The cosine of π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘π) = -1 | ||
Theorem | efipi 24225 | The exponential of i · π. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (exp‘(i · π)) = -1 | ||
Theorem | eulerid 24226 | Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ ((exp‘(i · π)) + 1) = 0 | ||
Theorem | sin2pi 24227 | The sine of 2π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘(2 · π)) = 0 | ||
Theorem | cos2pi 24228 | The cosine of 2π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘(2 · π)) = 1 | ||
Theorem | ef2pi 24229 | The exponential of 2πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (exp‘(i · (2 · π))) = 1 | ||
Theorem | ef2kpi 24230 | The exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1) | ||
Theorem | efper 24231 | The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 · π)) · 𝐾))) = (exp‘𝐴)) | ||
Theorem | sinperlem 24232 | Lemma for sinper 24233 and cosper 24234. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷)) & ⊢ ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹‘𝐴)) | ||
Theorem | sinper 24233 | The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) = (sin‘𝐴)) | ||
Theorem | cosper 24234 | The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) = (cos‘𝐴)) | ||
Theorem | sin2kpi 24235 | If 𝐾 is an integer, the sine of 2𝐾π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) = 0) | ||
Theorem | cos2kpi 24236 | If 𝐾 is an integer, the cosine of 2𝐾π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1) | ||
Theorem | sin2pim 24237 | Sine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((2 · π) − 𝐴)) = -(sin‘𝐴)) | ||
Theorem | cos2pim 24238 | Cosine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((2 · π) − 𝐴)) = (cos‘𝐴)) | ||
Theorem | sinmpi 24239 | Sine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴)) | ||
Theorem | cosmpi 24240 | Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴)) | ||
Theorem | sinppi 24241 | Sine of a number plus π. (Contributed by NM, 10-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴)) | ||
Theorem | cosppi 24242 | Cosine of a complex number plus π. (Contributed by NM, 18-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴)) | ||
Theorem | efimpi 24243 | The exponential function of i times a real number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -(exp‘(i · 𝐴))) | ||
Theorem | sinhalfpip 24244 | The sine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | ||
Theorem | sinhalfpim 24245 | The sine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) | ||
Theorem | coshalfpip 24246 | The cosine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) + 𝐴)) = -(sin‘𝐴)) | ||
Theorem | coshalfpim 24247 | The cosine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) | ||
Theorem | ptolemy 24248 | Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 14902, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶)))) | ||
Theorem | sincosq1lem 24249 | Lemma for sincosq1sgn 24250. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (sin‘𝐴)) | ||
Theorem | sincosq1sgn 24250 | The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) | ||
Theorem | sincosq2sgn 24251 | The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0)) | ||
Theorem | sincosq3sgn 24252 | The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0)) | ||
Theorem | sincosq4sgn 24253 | The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴))) | ||
Theorem | coseq00topi 24254 | Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) | ||
Theorem | coseq0negpitopi 24255 | Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)})) | ||
Theorem | tanrpcl 24256 | Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) ∈ ℝ+) | ||
Theorem | tangtx 24257 | The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴)) | ||
Theorem | tanabsge 24258 | The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴))) | ||
Theorem | sinq12gt0 24259 | The sine of a number strictly between 0 and π is positive. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴)) | ||
Theorem | sinq12ge0 24260 | The sine of a number between 0 and π is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ (0[,]π) → 0 ≤ (sin‘𝐴)) | ||
Theorem | sinq34lt0t 24261 | The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.) |
⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) | ||
Theorem | cosq14gt0 24262 | The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴)) | ||
Theorem | cosq14ge0 24263 | The cosine of a number between -π / 2 and π / 2 is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘𝐴)) | ||
Theorem | sincosq1eq 24264 | Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2)))) | ||
Theorem | sincos4thpi 24265 | The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2))) | ||
Theorem | tan4thpi 24266 | The tangent of π / 4. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ (tan‘(π / 4)) = 1 | ||
Theorem | sincos6thpi 24267 | The sine and cosine of π / 6. (Contributed by Paul Chapman, 25-Jan-2008.) Replace OLD theorem. (Revised by Wolf Lammen, 24-Sep-2020.) |
⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | ||
Theorem | sincos3rdpi 24268 | The sine and cosine of π / 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2)) | ||
Theorem | pige3 24269 | π is greater or equal to 3. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2π. We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ 3 ≤ π | ||
Theorem | abssinper 24270 | The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴))) | ||
Theorem | sinkpi 24271 | The sine of an integer multiple of π is 0. (Contributed by NM, 11-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · π)) = 0) | ||
Theorem | coskpi 24272 | The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) | ||
Theorem | sineq0 24273 | A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ)) | ||
Theorem | coseq1 24274 | A complex number whose cosine is one is an integer multiple of 2π. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) | ||
Theorem | efeq1 24275 | A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ)) | ||
Theorem | cosne0 24276 | The cosine function has no zeroes within the vertical strip of the complex plane between real part -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0) | ||
Theorem | cosordlem 24277 | Lemma for cosord 24278. (Contributed by Mario Carneiro, 10-May-2014.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (cos‘𝐵) < (cos‘𝐴)) | ||
Theorem | cosord 24278 | Cosine is decreasing over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 ↔ (cos‘𝐵) < (cos‘𝐴))) | ||
Theorem | cos11 24279 | Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) | ||
Theorem | sinord 24280 | Sine is increasing over the closed interval from -(π / 2) to (π / 2). (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) | ||
Theorem | recosf1o 24281 | The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) | ||
Theorem | resinf1o 24282 | The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) | ||
Theorem | tanord1 24283 | The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 24284.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.) |
⊢ ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) | ||
Theorem | tanord 24284 | The tangent function is strictly increasing on its principal domain. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) | ||
Theorem | tanregt0 24285 | The positivity of tan(𝐴) extends to complex numbers with the same real part. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴))) | ||
Theorem | negpitopissre 24286 | (-π(,]π) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (-π(,]π) ⊆ ℝ | ||
Theorem | efgh 24287* | The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) | ||
Theorem | efif1olem1 24288* | Lemma for efif1o 24292. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) | ||
Theorem | efif1olem2 24289* | Lemma for efif1o 24292. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) | ||
Theorem | efif1olem3 24290* | Lemma for efif1o 24292. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) | ||
Theorem | efif1olem4 24291* | The exponential function of an imaginary number maps any interval of length 2π one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) & ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) & ⊢ 𝑆 = (sin ↾ (-(π / 2)[,](π / 2))) ⇒ ⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐶) | ||
Theorem | efif1o 24292* | The exponential function of an imaginary number maps any open-below, closed-above interval of length 2π one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ (𝐴 ∈ ℝ → 𝐹:𝐷–1-1-onto→𝐶) | ||
Theorem | efifo 24293* | The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ 𝐹:ℝ–onto→𝐶 | ||
Theorem | eff1olem 24294* | The exponential function maps the set 𝑆, of complex numbers with imaginary part in a real interval of length 2 · π, one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝑆 = (◡ℑ “ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) & ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) ⇒ ⊢ (𝜑 → (exp ↾ 𝑆):𝑆–1-1-onto→(ℂ ∖ {0})) | ||
Theorem | eff1o 24295 | The exponential function maps the set 𝑆, of complex numbers with imaginary part in the closed-above, open-below interval from -π to π one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
⊢ 𝑆 = (◡ℑ “ (-π(,]π)) ⇒ ⊢ (exp ↾ 𝑆):𝑆–1-1-onto→(ℂ ∖ {0}) | ||
Theorem | efabl 24296* | The image of a subgroup of the group +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) & ⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (SubGrp‘ℂfld)) ⇒ ⊢ (𝜑 → 𝐺 ∈ Abel) | ||
Theorem | efsubm 24297* | The image of a subgroup of the group +, under the exponential function of a scaled complex number is a submonoid of the multiplicative group of ℂfld. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) & ⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (SubGrp‘ℂfld)) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld))) | ||
Theorem | circgrp 24298 | The circle group 𝑇 is an Abelian group. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s 𝐶) ⇒ ⊢ 𝑇 ∈ Abel | ||
Theorem | circsubm 24299 | The circle group 𝑇 is a submonoid of the multiplicative group of ℂfld. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s 𝐶) ⇒ ⊢ 𝐶 ∈ (SubMnd‘(mulGrp‘ℂfld)) | ||
Theorem | rzgrp 24300 | The quotient group R/Z is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) ⇒ ⊢ 𝑅 ∈ Grp |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |