MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcco Structured version   Visualization version   Unicode version

Theorem estrcco 16770
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c  |-  C  =  (ExtStrCat `  U )
estrcbas.u  |-  ( ph  ->  U  e.  V )
estrcco.o  |-  .x.  =  (comp `  C )
estrcco.x  |-  ( ph  ->  X  e.  U )
estrcco.y  |-  ( ph  ->  Y  e.  U )
estrcco.z  |-  ( ph  ->  Z  e.  U )
estrcco.a  |-  A  =  ( Base `  X
)
estrcco.b  |-  B  =  ( Base `  Y
)
estrcco.d  |-  D  =  ( Base `  Z
)
estrcco.f  |-  ( ph  ->  F : A --> B )
estrcco.g  |-  ( ph  ->  G : B --> D )
Assertion
Ref Expression
estrcco  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  =  ( G  o.  F ) )

Proof of Theorem estrcco
Dummy variables  f 
g  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . . 4  |-  C  =  (ExtStrCat `  U )
2 estrcbas.u . . . 4  |-  ( ph  ->  U  e.  V )
3 estrcco.o . . . 4  |-  .x.  =  (comp `  C )
41, 2, 3estrccofval 16769 . . 3  |-  ( ph  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) )
5 fveq2 6191 . . . . . . 7  |-  ( z  =  Z  ->  ( Base `  z )  =  ( Base `  Z
) )
65adantl 482 . . . . . 6  |-  ( ( v  =  <. X ,  Y >.  /\  z  =  Z )  ->  ( Base `  z )  =  ( Base `  Z
) )
76adantl 482 . . . . 5  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( Base `  z )  =  ( Base `  Z
) )
8 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  v  =  <. X ,  Y >. )
98fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  v )  =  ( 2nd `  <. X ,  Y >. )
)
10 estrcco.x . . . . . . . . 9  |-  ( ph  ->  X  e.  U )
11 estrcco.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  U )
12 op2ndg 7181 . . . . . . . . 9  |-  ( ( X  e.  U  /\  Y  e.  U )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
1310, 11, 12syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
1413adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
159, 14eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  v )  =  Y )
1615fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( Base `  ( 2nd `  v
) )  =  (
Base `  Y )
)
177, 16oveq12d 6668 . . . 4  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
( Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) )  =  ( (
Base `  Z )  ^m  ( Base `  Y
) ) )
188fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 1st `  v )  =  ( 1st `  <. X ,  Y >. )
)
1918fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( Base `  ( 1st `  v
) )  =  (
Base `  ( 1st ` 
<. X ,  Y >. ) ) )
20 op1stg 7180 . . . . . . . . 9  |-  ( ( X  e.  U  /\  Y  e.  U )  ->  ( 1st `  <. X ,  Y >. )  =  X )
2110, 11, 20syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( 1st `  <. X ,  Y >. )  =  X )
2221fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( Base `  ( 1st `  <. X ,  Y >. ) )  =  (
Base `  X )
)
2322adantr 481 . . . . . 6  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( Base `  ( 1st `  <. X ,  Y >. )
)  =  ( Base `  X ) )
2419, 23eqtrd 2656 . . . . 5  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( Base `  ( 1st `  v
) )  =  (
Base `  X )
)
2516, 24oveq12d 6668 . . . 4  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  =  ( ( Base `  Y )  ^m  ( Base `  X ) ) )
26 eqidd 2623 . . . 4  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
g  o.  f )  =  ( g  o.  f ) )
2717, 25, 26mpt2eq123dv 6717 . . 3  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
g  e.  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) ) ,  f  e.  ( ( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  |->  ( g  o.  f ) )  =  ( g  e.  ( ( Base `  Z
)  ^m  ( Base `  Y ) ) ,  f  e.  ( (
Base `  Y )  ^m  ( Base `  X
) )  |->  ( g  o.  f ) ) )
28 opelxpi 5148 . . . 4  |-  ( ( X  e.  U  /\  Y  e.  U )  -> 
<. X ,  Y >.  e.  ( U  X.  U
) )
2910, 11, 28syl2anc 693 . . 3  |-  ( ph  -> 
<. X ,  Y >.  e.  ( U  X.  U
) )
30 estrcco.z . . 3  |-  ( ph  ->  Z  e.  U )
31 ovex 6678 . . . . 5  |-  ( (
Base `  Z )  ^m  ( Base `  Y
) )  e.  _V
32 ovex 6678 . . . . 5  |-  ( (
Base `  Y )  ^m  ( Base `  X
) )  e.  _V
3331, 32mpt2ex 7247 . . . 4  |-  ( g  e.  ( ( Base `  Z )  ^m  ( Base `  Y ) ) ,  f  e.  ( ( Base `  Y
)  ^m  ( Base `  X ) )  |->  ( g  o.  f ) )  e.  _V
3433a1i 11 . . 3  |-  ( ph  ->  ( g  e.  ( ( Base `  Z
)  ^m  ( Base `  Y ) ) ,  f  e.  ( (
Base `  Y )  ^m  ( Base `  X
) )  |->  ( g  o.  f ) )  e.  _V )
354, 27, 29, 30, 34ovmpt2d 6788 . 2  |-  ( ph  ->  ( <. X ,  Y >.  .x.  Z )  =  ( g  e.  ( ( Base `  Z
)  ^m  ( Base `  Y ) ) ,  f  e.  ( (
Base `  Y )  ^m  ( Base `  X
) )  |->  ( g  o.  f ) ) )
36 simpl 473 . . . 4  |-  ( ( g  =  G  /\  f  =  F )  ->  g  =  G )
37 simpr 477 . . . 4  |-  ( ( g  =  G  /\  f  =  F )  ->  f  =  F )
3836, 37coeq12d 5286 . . 3  |-  ( ( g  =  G  /\  f  =  F )  ->  ( g  o.  f
)  =  ( G  o.  F ) )
3938adantl 482 . 2  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( g  o.  f
)  =  ( G  o.  F ) )
40 estrcco.g . . . 4  |-  ( ph  ->  G : B --> D )
41 estrcco.b . . . . . . 7  |-  B  =  ( Base `  Y
)
4241a1i 11 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  Y ) )
4342eqcomd 2628 . . . . 5  |-  ( ph  ->  ( Base `  Y
)  =  B )
44 estrcco.d . . . . . . 7  |-  D  =  ( Base `  Z
)
4544a1i 11 . . . . . 6  |-  ( ph  ->  D  =  ( Base `  Z ) )
4645eqcomd 2628 . . . . 5  |-  ( ph  ->  ( Base `  Z
)  =  D )
4743, 46feq23d 6040 . . . 4  |-  ( ph  ->  ( G : (
Base `  Y ) --> ( Base `  Z )  <->  G : B --> D ) )
4840, 47mpbird 247 . . 3  |-  ( ph  ->  G : ( Base `  Y ) --> ( Base `  Z ) )
49 fvexd 6203 . . . 4  |-  ( ph  ->  ( Base `  Z
)  e.  _V )
50 fvexd 6203 . . . 4  |-  ( ph  ->  ( Base `  Y
)  e.  _V )
51 elmapg 7870 . . . 4  |-  ( ( ( Base `  Z
)  e.  _V  /\  ( Base `  Y )  e.  _V )  ->  ( G  e.  ( ( Base `  Z )  ^m  ( Base `  Y )
)  <->  G : ( Base `  Y ) --> ( Base `  Z ) ) )
5249, 50, 51syl2anc 693 . . 3  |-  ( ph  ->  ( G  e.  ( ( Base `  Z
)  ^m  ( Base `  Y ) )  <->  G :
( Base `  Y ) --> ( Base `  Z )
) )
5348, 52mpbird 247 . 2  |-  ( ph  ->  G  e.  ( (
Base `  Z )  ^m  ( Base `  Y
) ) )
54 estrcco.f . . . 4  |-  ( ph  ->  F : A --> B )
55 estrcco.a . . . . . . 7  |-  A  =  ( Base `  X
)
5655a1i 11 . . . . . 6  |-  ( ph  ->  A  =  ( Base `  X ) )
5756eqcomd 2628 . . . . 5  |-  ( ph  ->  ( Base `  X
)  =  A )
5857, 43feq23d 6040 . . . 4  |-  ( ph  ->  ( F : (
Base `  X ) --> ( Base `  Y )  <->  F : A --> B ) )
5954, 58mpbird 247 . . 3  |-  ( ph  ->  F : ( Base `  X ) --> ( Base `  Y ) )
60 fvexd 6203 . . . 4  |-  ( ph  ->  ( Base `  X
)  e.  _V )
61 elmapg 7870 . . . 4  |-  ( ( ( Base `  Y
)  e.  _V  /\  ( Base `  X )  e.  _V )  ->  ( F  e.  ( ( Base `  Y )  ^m  ( Base `  X )
)  <->  F : ( Base `  X ) --> ( Base `  Y ) ) )
6250, 60, 61syl2anc 693 . . 3  |-  ( ph  ->  ( F  e.  ( ( Base `  Y
)  ^m  ( Base `  X ) )  <->  F :
( Base `  X ) --> ( Base `  Y )
) )
6359, 62mpbird 247 . 2  |-  ( ph  ->  F  e.  ( (
Base `  Y )  ^m  ( Base `  X
) ) )
64 coexg 7117 . . 3  |-  ( ( G  e.  ( (
Base `  Z )  ^m  ( Base `  Y
) )  /\  F  e.  ( ( Base `  Y
)  ^m  ( Base `  X ) ) )  ->  ( G  o.  F )  e.  _V )
6553, 63, 64syl2anc 693 . 2  |-  ( ph  ->  ( G  o.  F
)  e.  _V )
6635, 39, 53, 63, 65ovmpt2d 6788 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  =  ( G  o.  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   Basecbs 15857  compcco 15953  ExtStrCatcestrc 16762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-estrc 16763
This theorem is referenced by:  estrccatid  16772  funcestrcsetclem9  16788  funcsetcestrclem9  16803  rngcco  41971  rnghmsubcsetclem2  41976  ringcco  42017  rhmsubcsetclem2  42022
  Copyright terms: Public domain W3C validator