![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno4prmfac193 | Structured version Visualization version GIF version |
Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
Ref | Expression |
---|---|
fmtno4prmfac193 | ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtno4prmfac 41484 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | |
2 | 5nn 11188 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
3 | 1nn0 11308 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
4 | 3nn 11186 | . . . . . . . . 9 ⊢ 3 ∈ ℕ | |
5 | 3, 4 | decnncl 11518 | . . . . . . . 8 ⊢ ;13 ∈ ℕ |
6 | 1lt5 11203 | . . . . . . . 8 ⊢ 1 < 5 | |
7 | 1nn 11031 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
8 | 3nn0 11310 | . . . . . . . . 9 ⊢ 3 ∈ ℕ0 | |
9 | 1lt10 11681 | . . . . . . . . 9 ⊢ 1 < ;10 | |
10 | 7, 8, 3, 9 | declti 11546 | . . . . . . . 8 ⊢ 1 < ;13 |
11 | eqid 2622 | . . . . . . . 8 ⊢ (5 · ;13) = (5 · ;13) | |
12 | 2, 5, 6, 10, 11 | nprmi 15402 | . . . . . . 7 ⊢ ¬ (5 · ;13) ∈ ℙ |
13 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;65 → 𝑃 = ;65) | |
14 | 5nn0 11312 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
15 | eqid 2622 | . . . . . . . . . 10 ⊢ ;13 = ;13 | |
16 | 5cn 11100 | . . . . . . . . . . . . 13 ⊢ 5 ∈ ℂ | |
17 | 16 | mulid1i 10042 | . . . . . . . . . . . 12 ⊢ (5 · 1) = 5 |
18 | 17 | oveq1i 6660 | . . . . . . . . . . 11 ⊢ ((5 · 1) + 1) = (5 + 1) |
19 | 5p1e6 11155 | . . . . . . . . . . 11 ⊢ (5 + 1) = 6 | |
20 | 18, 19 | eqtri 2644 | . . . . . . . . . 10 ⊢ ((5 · 1) + 1) = 6 |
21 | 5t3e15 11635 | . . . . . . . . . 10 ⊢ (5 · 3) = ;15 | |
22 | 14, 3, 8, 15, 14, 3, 20, 21 | decmul2c 11589 | . . . . . . . . 9 ⊢ (5 · ;13) = ;65 |
23 | 13, 22 | syl6eqr 2674 | . . . . . . . 8 ⊢ (𝑃 = ;65 → 𝑃 = (5 · ;13)) |
24 | 23 | eleq1d 2686 | . . . . . . 7 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ ↔ (5 · ;13) ∈ ℙ)) |
25 | 12, 24 | mtbiri 317 | . . . . . 6 ⊢ (𝑃 = ;65 → ¬ 𝑃 ∈ ℙ) |
26 | 25 | pm2.21d 118 | . . . . 5 ⊢ (𝑃 = ;65 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
27 | 4nn0 11311 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
28 | 27, 4 | decnncl 11518 | . . . . . . . 8 ⊢ ;43 ∈ ℕ |
29 | 4nn 11187 | . . . . . . . . 9 ⊢ 4 ∈ ℕ | |
30 | 29, 8, 3, 9 | declti 11546 | . . . . . . . 8 ⊢ 1 < ;43 |
31 | 1lt3 11196 | . . . . . . . 8 ⊢ 1 < 3 | |
32 | eqid 2622 | . . . . . . . 8 ⊢ (;43 · 3) = (;43 · 3) | |
33 | 28, 4, 30, 31, 32 | nprmi 15402 | . . . . . . 7 ⊢ ¬ (;43 · 3) ∈ ℙ |
34 | id 22 | . . . . . . . . 9 ⊢ (𝑃 = ;;129 → 𝑃 = ;;129) | |
35 | eqid 2622 | . . . . . . . . . 10 ⊢ ;43 = ;43 | |
36 | 9nn0 11316 | . . . . . . . . . 10 ⊢ 9 ∈ ℕ0 | |
37 | 4t3e12 11632 | . . . . . . . . . 10 ⊢ (4 · 3) = ;12 | |
38 | 3t3e9 11180 | . . . . . . . . . 10 ⊢ (3 · 3) = 9 | |
39 | 8, 27, 8, 35, 36, 37, 38 | decmul1 11585 | . . . . . . . . 9 ⊢ (;43 · 3) = ;;129 |
40 | 34, 39 | syl6eqr 2674 | . . . . . . . 8 ⊢ (𝑃 = ;;129 → 𝑃 = (;43 · 3)) |
41 | 40 | eleq1d 2686 | . . . . . . 7 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ ↔ (;43 · 3) ∈ ℙ)) |
42 | 33, 41 | mtbiri 317 | . . . . . 6 ⊢ (𝑃 = ;;129 → ¬ 𝑃 ∈ ℙ) |
43 | 42 | pm2.21d 118 | . . . . 5 ⊢ (𝑃 = ;;129 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
44 | ax-1 6 | . . . . 5 ⊢ (𝑃 = ;;193 → (𝑃 ∈ ℙ → 𝑃 = ;;193)) | |
45 | 26, 43, 44 | 3jaoi 1391 | . . . 4 ⊢ ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → (𝑃 ∈ ℙ → 𝑃 = ;;193)) |
46 | 45 | com12 32 | . . 3 ⊢ (𝑃 ∈ ℙ → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
47 | 46 | 3ad2ant1 1082 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → ((𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193) → 𝑃 = ;;193)) |
48 | 1, 47 | mpd 15 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1036 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 1c1 9937 + caddc 9939 · cmul 9941 ≤ cle 10075 2c2 11070 3c3 11071 4c4 11072 5c5 11073 6c6 11074 9c9 11077 ;cdc 11493 ⌊cfl 12591 √csqrt 13973 ∥ cdvds 14983 ℙcprime 15385 FermatNocfmtno 41439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ico 12181 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-fac 13061 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-prod 14636 df-dvds 14984 df-gcd 15217 df-prm 15386 df-odz 15470 df-phi 15471 df-pc 15542 df-lgs 25020 df-fmtno 41440 |
This theorem is referenced by: fmtno4prm 41487 |
Copyright terms: Public domain | W3C validator |