Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem52 Structured version   Visualization version   Unicode version

Theorem fourierdlem52 40375
Description: d16:d17,d18:jca |- ( ph -> ( ( S  0 )  <_  A  /\  A  <_  ( S 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem52.tf  |-  ( ph  ->  T  e.  Fin )
fourierdlem52.n  |-  N  =  ( ( # `  T
)  -  1 )
fourierdlem52.s  |-  S  =  ( iota f f 
Isom  <  ,  <  (
( 0 ... N
) ,  T ) )
fourierdlem52.a  |-  ( ph  ->  A  e.  RR )
fourierdlem52.b  |-  ( ph  ->  B  e.  RR )
fourierdlem52.t  |-  ( ph  ->  T  C_  ( A [,] B ) )
fourierdlem52.at  |-  ( ph  ->  A  e.  T )
fourierdlem52.bt  |-  ( ph  ->  B  e.  T )
Assertion
Ref Expression
fourierdlem52  |-  ( ph  ->  ( ( S :
( 0 ... N
) --> ( A [,] B )  /\  ( S `  0 )  =  A )  /\  ( S `  N )  =  B ) )
Distinct variable groups:    f, N    S, f    T, f    ph, f
Allowed substitution hints:    A( f)    B( f)

Proof of Theorem fourierdlem52
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fourierdlem52.tf . . . . 5  |-  ( ph  ->  T  e.  Fin )
2 fourierdlem52.t . . . . . 6  |-  ( ph  ->  T  C_  ( A [,] B ) )
3 fourierdlem52.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
4 fourierdlem52.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
53, 4iccssred 39727 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
62, 5sstrd 3613 . . . . 5  |-  ( ph  ->  T  C_  RR )
7 fourierdlem52.s . . . . 5  |-  S  =  ( iota f f 
Isom  <  ,  <  (
( 0 ... N
) ,  T ) )
8 fourierdlem52.n . . . . 5  |-  N  =  ( ( # `  T
)  -  1 )
91, 6, 7, 8fourierdlem36 40360 . . . 4  |-  ( ph  ->  S  Isom  <  ,  <  ( ( 0 ... N
) ,  T ) )
10 isof1o 6573 . . . 4  |-  ( S 
Isom  <  ,  <  (
( 0 ... N
) ,  T )  ->  S : ( 0 ... N ) -1-1-onto-> T )
11 f1of 6137 . . . 4  |-  ( S : ( 0 ... N ) -1-1-onto-> T  ->  S :
( 0 ... N
) --> T )
129, 10, 113syl 18 . . 3  |-  ( ph  ->  S : ( 0 ... N ) --> T )
1312, 2fssd 6057 . 2  |-  ( ph  ->  S : ( 0 ... N ) --> ( A [,] B ) )
14 f1ofo 6144 . . . . . 6  |-  ( S : ( 0 ... N ) -1-1-onto-> T  ->  S :
( 0 ... N
) -onto-> T )
159, 10, 143syl 18 . . . . 5  |-  ( ph  ->  S : ( 0 ... N ) -onto-> T )
16 fourierdlem52.at . . . . 5  |-  ( ph  ->  A  e.  T )
17 foelrn 6378 . . . . 5  |-  ( ( S : ( 0 ... N ) -onto-> T  /\  A  e.  T
)  ->  E. j  e.  ( 0 ... N
) A  =  ( S `  j ) )
1815, 16, 17syl2anc 693 . . . 4  |-  ( ph  ->  E. j  e.  ( 0 ... N ) A  =  ( S `
 j ) )
19 elfzle1 12344 . . . . . . . . 9  |-  ( j  e.  ( 0 ... N )  ->  0  <_  j )
2019adantl 482 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  0  <_  j )
219adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  S  Isom  <  ,  <  (
( 0 ... N
) ,  T ) )
22 ressxr 10083 . . . . . . . . . . . 12  |-  RR  C_  RR*
236, 22syl6ss 3615 . . . . . . . . . . 11  |-  ( ph  ->  T  C_  RR* )
2423adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  T  C_ 
RR* )
25 fzssz 12343 . . . . . . . . . . 11  |-  ( 0 ... N )  C_  ZZ
26 zssre 11384 . . . . . . . . . . . 12  |-  ZZ  C_  RR
2726, 22sstri 3612 . . . . . . . . . . 11  |-  ZZ  C_  RR*
2825, 27sstri 3612 . . . . . . . . . 10  |-  ( 0 ... N )  C_  RR*
2924, 28jctil 560 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  (
( 0 ... N
)  C_  RR*  /\  T  C_ 
RR* ) )
30 hashcl 13147 . . . . . . . . . . . . . . . 16  |-  ( T  e.  Fin  ->  ( # `
 T )  e. 
NN0 )
311, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( # `  T
)  e.  NN0 )
32 ne0i 3921 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  T  ->  T  =/=  (/) )
3316, 32syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  T  =/=  (/) )
34 hashge1 13178 . . . . . . . . . . . . . . . 16  |-  ( ( T  e.  Fin  /\  T  =/=  (/) )  ->  1  <_  ( # `  T
) )
351, 33, 34syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  <_  ( # `  T
) )
36 elnnnn0c 11338 . . . . . . . . . . . . . . 15  |-  ( (
# `  T )  e.  NN  <->  ( ( # `  T )  e.  NN0  /\  1  <_  ( # `  T
) ) )
3731, 35, 36sylanbrc 698 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( # `  T
)  e.  NN )
38 nnm1nn0 11334 . . . . . . . . . . . . . 14  |-  ( (
# `  T )  e.  NN  ->  ( ( # `
 T )  - 
1 )  e.  NN0 )
3937, 38syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( # `  T
)  -  1 )  e.  NN0 )
408, 39syl5eqel 2705 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN0 )
41 nn0uz 11722 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
4240, 41syl6eleq 2711 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
43 eluzfz1 12348 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... N
) )
4442, 43syl 17 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ( 0 ... N ) )
4544anim1i 592 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  (
0  e.  ( 0 ... N )  /\  j  e.  ( 0 ... N ) ) )
46 leisorel 13244 . . . . . . . . 9  |-  ( ( S  Isom  <  ,  <  ( ( 0 ... N
) ,  T )  /\  ( ( 0 ... N )  C_  RR* 
/\  T  C_  RR* )  /\  ( 0  e.  ( 0 ... N )  /\  j  e.  ( 0 ... N ) ) )  ->  (
0  <_  j  <->  ( S `  0 )  <_ 
( S `  j
) ) )
4721, 29, 45, 46syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  (
0  <_  j  <->  ( S `  0 )  <_ 
( S `  j
) ) )
4820, 47mpbid 222 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  ( S `  0 )  <_  ( S `  j
) )
49483adant3 1081 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  A  =  ( S `  j ) )  ->  ( S `  0 )  <_ 
( S `  j
) )
50 eqcom 2629 . . . . . . . 8  |-  ( A  =  ( S `  j )  <->  ( S `  j )  =  A )
5150biimpi 206 . . . . . . 7  |-  ( A  =  ( S `  j )  ->  ( S `  j )  =  A )
52513ad2ant3 1084 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  A  =  ( S `  j ) )  ->  ( S `  j )  =  A )
5349, 52breqtrd 4679 . . . . 5  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  A  =  ( S `  j ) )  ->  ( S `  0 )  <_  A )
5453rexlimdv3a 3033 . . . 4  |-  ( ph  ->  ( E. j  e.  ( 0 ... N
) A  =  ( S `  j )  ->  ( S ` 
0 )  <_  A
) )
5518, 54mpd 15 . . 3  |-  ( ph  ->  ( S `  0
)  <_  A )
563rexrd 10089 . . . 4  |-  ( ph  ->  A  e.  RR* )
574rexrd 10089 . . . 4  |-  ( ph  ->  B  e.  RR* )
5813, 44ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( S `  0
)  e.  ( A [,] B ) )
59 iccgelb 12230 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( S `
 0 )  e.  ( A [,] B
) )  ->  A  <_  ( S `  0
) )
6056, 57, 58, 59syl3anc 1326 . . 3  |-  ( ph  ->  A  <_  ( S `  0 ) )
615, 58sseldd 3604 . . . 4  |-  ( ph  ->  ( S `  0
)  e.  RR )
6261, 3letri3d 10179 . . 3  |-  ( ph  ->  ( ( S ` 
0 )  =  A  <-> 
( ( S ` 
0 )  <_  A  /\  A  <_  ( S `
 0 ) ) ) )
6355, 60, 62mpbir2and 957 . 2  |-  ( ph  ->  ( S `  0
)  =  A )
64 eluzfz2 12349 . . . . . 6  |-  ( N  e.  ( ZZ>= `  0
)  ->  N  e.  ( 0 ... N
) )
6542, 64syl 17 . . . . 5  |-  ( ph  ->  N  e.  ( 0 ... N ) )
6613, 65ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( S `  N
)  e.  ( A [,] B ) )
67 iccleub 12229 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( S `
 N )  e.  ( A [,] B
) )  ->  ( S `  N )  <_  B )
6856, 57, 66, 67syl3anc 1326 . . 3  |-  ( ph  ->  ( S `  N
)  <_  B )
69 fourierdlem52.bt . . . . 5  |-  ( ph  ->  B  e.  T )
70 foelrn 6378 . . . . 5  |-  ( ( S : ( 0 ... N ) -onto-> T  /\  B  e.  T
)  ->  E. j  e.  ( 0 ... N
) B  =  ( S `  j ) )
7115, 69, 70syl2anc 693 . . . 4  |-  ( ph  ->  E. j  e.  ( 0 ... N ) B  =  ( S `
 j ) )
72 simp3 1063 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  B  =  ( S `  j ) )  ->  B  =  ( S `  j ) )
73 elfzle2 12345 . . . . . . . 8  |-  ( j  e.  ( 0 ... N )  ->  j  <_  N )
74733ad2ant2 1083 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  B  =  ( S `  j ) )  ->  j  <_  N )
7593ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  B  =  ( S `  j ) )  ->  S  Isom  <  ,  <  ( ( 0 ... N ) ,  T ) )
76293adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  B  =  ( S `  j ) )  ->  ( (
0 ... N )  C_  RR* 
/\  T  C_  RR* )
)
77 simp2 1062 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  B  =  ( S `  j ) )  ->  j  e.  ( 0 ... N
) )
78653ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  B  =  ( S `  j ) )  ->  N  e.  ( 0 ... N
) )
79 leisorel 13244 . . . . . . . 8  |-  ( ( S  Isom  <  ,  <  ( ( 0 ... N
) ,  T )  /\  ( ( 0 ... N )  C_  RR* 
/\  T  C_  RR* )  /\  ( j  e.  ( 0 ... N )  /\  N  e.  ( 0 ... N ) ) )  ->  (
j  <_  N  <->  ( S `  j )  <_  ( S `  N )
) )
8075, 76, 77, 78, 79syl112anc 1330 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  B  =  ( S `  j ) )  ->  ( j  <_  N  <->  ( S `  j )  <_  ( S `  N )
) )
8174, 80mpbid 222 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  B  =  ( S `  j ) )  ->  ( S `  j )  <_  ( S `  N )
)
8272, 81eqbrtrd 4675 . . . . 5  |-  ( (
ph  /\  j  e.  ( 0 ... N
)  /\  B  =  ( S `  j ) )  ->  B  <_  ( S `  N ) )
8382rexlimdv3a 3033 . . . 4  |-  ( ph  ->  ( E. j  e.  ( 0 ... N
) B  =  ( S `  j )  ->  B  <_  ( S `  N )
) )
8471, 83mpd 15 . . 3  |-  ( ph  ->  B  <_  ( S `  N ) )
855, 66sseldd 3604 . . . 4  |-  ( ph  ->  ( S `  N
)  e.  RR )
8685, 4letri3d 10179 . . 3  |-  ( ph  ->  ( ( S `  N )  =  B  <-> 
( ( S `  N )  <_  B  /\  B  <_  ( S `
 N ) ) ) )
8768, 84, 86mpbir2and 957 . 2  |-  ( ph  ->  ( S `  N
)  =  B )
8813, 63, 87jca31 557 1  |-  ( ph  ->  ( ( S :
( 0 ... N
) --> ( A [,] B )  /\  ( S `  0 )  =  A )  /\  ( S `  N )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   iotacio 5849   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   [,]cicc 12178   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-icc 12182  df-fz 12327  df-hash 13118
This theorem is referenced by:  fourierdlem103  40426  fourierdlem104  40427
  Copyright terms: Public domain W3C validator