MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodle Structured version   Visualization version   Unicode version

Theorem fprodle 14727
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph  |-  F/ k
ph
fprodle.a  |-  ( ph  ->  A  e.  Fin )
fprodle.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodle.0l3b  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
fprodle.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
fprodle.blec  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
Assertion
Ref Expression
fprodle  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fprodle
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 1red 10055 . . . 4  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  1  e.  RR )
2 fprodle.kph . . . . . 6  |-  F/ k
ph
3 nfra1 2941 . . . . . 6  |-  F/ k A. k  e.  A  B  =/=  0
42, 3nfan 1828 . . . . 5  |-  F/ k ( ph  /\  A. k  e.  A  B  =/=  0 )
5 fprodle.a . . . . . 6  |-  ( ph  ->  A  e.  Fin )
65adantr 481 . . . . 5  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  A  e.  Fin )
7 fprodle.c . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
87adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  C  e.  RR )
9 fprodle.b . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
109adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  B  e.  RR )
11 rspa 2930 . . . . . . 7  |-  ( ( A. k  e.  A  B  =/=  0  /\  k  e.  A )  ->  B  =/=  0 )
1211adantll 750 . . . . . 6  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  B  =/=  0 )
138, 10, 12redivcld 10853 . . . . 5  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  ( C  /  B )  e.  RR )
144, 6, 13fprodreclf 14689 . . . 4  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  prod_ k  e.  A  ( C  /  B )  e.  RR )
152, 5, 9fprodreclf 14689 . . . . 5  |-  ( ph  ->  prod_ k  e.  A  B  e.  RR )
1615adantr 481 . . . 4  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  prod_ k  e.  A  B  e.  RR )
17 fprodle.0l3b . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
182, 5, 9, 17fprodge0 14724 . . . . 5  |-  ( ph  ->  0  <_  prod_ k  e.  A  B )
1918adantr 481 . . . 4  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  0  <_  prod_ k  e.  A  B )
20 0red 10041 . . . . . . . 8  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  0  e.  RR )
2117adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  0  <_  B )
2220, 10, 21, 12leneltd 10191 . . . . . . 7  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  0  <  B )
2310, 22elrpd 11869 . . . . . 6  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  B  e.  RR+ )
24 fprodle.blec . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
2524adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  B  <_  C )
26 divge1 11898 . . . . . 6  |-  ( ( B  e.  RR+  /\  C  e.  RR  /\  B  <_  C )  ->  1  <_  ( C  /  B
) )
2723, 8, 25, 26syl3anc 1326 . . . . 5  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  1  <_  ( C  /  B
) )
284, 6, 13, 27fprodge1 14726 . . . 4  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  1  <_  prod_ k  e.  A  ( C  /  B
) )
291, 14, 16, 19, 28lemul2ad 10964 . . 3  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  ( prod_ k  e.  A  B  x.  1 )  <_  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  ( C  /  B
) ) )
309recnd 10068 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
312, 5, 30fprodclf 14723 . . . . . 6  |-  ( ph  ->  prod_ k  e.  A  B  e.  CC )
3231mulid1d 10057 . . . . 5  |-  ( ph  ->  ( prod_ k  e.  A  B  x.  1 )  =  prod_ k  e.  A  B )
3332adantr 481 . . . 4  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  ( prod_ k  e.  A  B  x.  1 )  =  prod_ k  e.  A  B )
347recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
3534adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  C  e.  CC )
3630adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  A. k  e.  A  B  =/=  0 )  /\  k  e.  A )  ->  B  e.  CC )
374, 6, 35, 36, 12fproddivf 14718 . . . . . 6  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  prod_ k  e.  A  ( C  /  B )  =  ( prod_ k  e.  A  C  /  prod_ k  e.  A  B ) )
3837oveq2d 6666 . . . . 5  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  ( C  /  B
) )  =  (
prod_ k  e.  A  B  x.  ( prod_ k  e.  A  C  /  prod_ k  e.  A  B
) ) )
392, 5, 34fprodclf 14723 . . . . . . 7  |-  ( ph  ->  prod_ k  e.  A  C  e.  CC )
4039adantr 481 . . . . . 6  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  prod_ k  e.  A  C  e.  CC )
4131adantr 481 . . . . . 6  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  prod_ k  e.  A  B  e.  CC )
424, 6, 36, 12fprodn0f 14722 . . . . . 6  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  prod_ k  e.  A  B  =/=  0 )
4340, 41, 42divcan2d 10803 . . . . 5  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  ( prod_ k  e.  A  B  x.  ( prod_ k  e.  A  C  /  prod_ k  e.  A  B ) )  = 
prod_ k  e.  A  C )
44 eqidd 2623 . . . . 5  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  prod_ k  e.  A  C  = 
prod_ k  e.  A  C )
4538, 43, 443eqtrd 2660 . . . 4  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  ( C  /  B
) )  =  prod_ k  e.  A  C )
4633, 45breq12d 4666 . . 3  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  (
( prod_ k  e.  A  B  x.  1 )  <_  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  ( C  /  B ) )  <->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C ) )
4729, 46mpbid 222 . 2  |-  ( (
ph  /\  A. k  e.  A  B  =/=  0 )  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C
)
48 simpl 473 . . 3  |-  ( (
ph  /\  -.  A. k  e.  A  B  =/=  0 )  ->  ph )
49 nne 2798 . . . . . . 7  |-  ( -.  B  =/=  0  <->  B  =  0 )
5049rexbii 3041 . . . . . 6  |-  ( E. k  e.  A  -.  B  =/=  0  <->  E. k  e.  A  B  = 
0 )
51 rexnal 2995 . . . . . 6  |-  ( E. k  e.  A  -.  B  =/=  0  <->  -.  A. k  e.  A  B  =/=  0 )
52 nfv 1843 . . . . . . 7  |-  F/ j  B  =  0
53 nfcsb1v 3549 . . . . . . . 8  |-  F/_ k [_ j  /  k ]_ B
54 nfcv 2764 . . . . . . . 8  |-  F/_ k
0
5553, 54nfeq 2776 . . . . . . 7  |-  F/ k
[_ j  /  k ]_ B  =  0
56 csbeq1a 3542 . . . . . . . 8  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
5756eqeq1d 2624 . . . . . . 7  |-  ( k  =  j  ->  ( B  =  0  <->  [_ j  / 
k ]_ B  =  0 ) )
5852, 55, 57cbvrex 3168 . . . . . 6  |-  ( E. k  e.  A  B  =  0  <->  E. j  e.  A  [_ j  / 
k ]_ B  =  0 )
5950, 51, 583bitr3i 290 . . . . 5  |-  ( -. 
A. k  e.  A  B  =/=  0  <->  E. j  e.  A  [_ j  / 
k ]_ B  =  0 )
6059biimpi 206 . . . 4  |-  ( -. 
A. k  e.  A  B  =/=  0  ->  E. j  e.  A  [_ j  / 
k ]_ B  =  0 )
6160adantl 482 . . 3  |-  ( (
ph  /\  -.  A. k  e.  A  B  =/=  0 )  ->  E. j  e.  A  [_ j  / 
k ]_ B  =  0 )
62 nfv 1843 . . . . . 6  |-  F/ j
ph
63 nfv 1843 . . . . . 6  |-  F/ j
prod_ k  e.  A  B  =  0
64 nfv 1843 . . . . . . . . 9  |-  F/ k  j  e.  A
652, 64, 55nf3an 1831 . . . . . . . 8  |-  F/ k ( ph  /\  j  e.  A  /\  [_ j  /  k ]_ B  =  0 )
6653ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A  /\  [_ j  / 
k ]_ B  =  0 )  ->  A  e.  Fin )
67303ad2antl1 1223 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  A  /\  [_ j  /  k ]_ B  =  0 )  /\  k  e.  A )  ->  B  e.  CC )
68 simp2 1062 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A  /\  [_ j  / 
k ]_ B  =  0 )  ->  j  e.  A )
6957biimparc 504 . . . . . . . . 9  |-  ( (
[_ j  /  k ]_ B  =  0  /\  k  =  j
)  ->  B  = 
0 )
70693ad2antl3 1225 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  A  /\  [_ j  /  k ]_ B  =  0 )  /\  k  =  j )  ->  B  =  0 )
7165, 66, 67, 68, 70fprodeq0g 14725 . . . . . . 7  |-  ( (
ph  /\  j  e.  A  /\  [_ j  / 
k ]_ B  =  0 )  ->  prod_ k  e.  A  B  =  0 )
72713exp 1264 . . . . . 6  |-  ( ph  ->  ( j  e.  A  ->  ( [_ j  / 
k ]_ B  =  0  ->  prod_ k  e.  A  B  =  0 ) ) )
7362, 63, 72rexlimd 3026 . . . . 5  |-  ( ph  ->  ( E. j  e.  A  [_ j  / 
k ]_ B  =  0  ->  prod_ k  e.  A  B  =  0 ) )
7473imp 445 . . . 4  |-  ( (
ph  /\  E. j  e.  A  [_ j  / 
k ]_ B  =  0 )  ->  prod_ k  e.  A  B  =  0 )
75 0red 10041 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  0  e.  RR )
7675, 9, 7, 17, 24letrd 10194 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  C )
772, 5, 7, 76fprodge0 14724 . . . . 5  |-  ( ph  ->  0  <_  prod_ k  e.  A  C )
7877adantr 481 . . . 4  |-  ( (
ph  /\  E. j  e.  A  [_ j  / 
k ]_ B  =  0 )  ->  0  <_  prod_
k  e.  A  C
)
7974, 78eqbrtrd 4675 . . 3  |-  ( (
ph  /\  E. j  e.  A  [_ j  / 
k ]_ B  =  0 )  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
8048, 61, 79syl2anc 693 . 2  |-  ( (
ph  /\  -.  A. k  e.  A  B  =/=  0 )  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C
)
8147, 80pm2.61dan 832 1  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   [_csb 3533   class class class wbr 4653  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075    / cdiv 10684   RR+crp 11832   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  prmolefac  15750  etransclem23  40474  hoidifhspdmvle  40834
  Copyright terms: Public domain W3C validator