![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodconst | Structured version Visualization version GIF version |
Description: The product of constant terms (𝑘 is not free in 𝐵.) (Contributed by Scott Fenton, 12-Jan-2018.) |
Ref | Expression |
---|---|
fprodconst | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(#‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp0 12864 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵↑0) = 1) | |
2 | 1 | eqcomd 2628 | . . . 4 ⊢ (𝐵 ∈ ℂ → 1 = (𝐵↑0)) |
3 | prodeq1 14639 | . . . . . 6 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) | |
4 | prod0 14673 | . . . . . 6 ⊢ ∏𝑘 ∈ ∅ 𝐵 = 1 | |
5 | 3, 4 | syl6eq 2672 | . . . . 5 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = 1) |
6 | fveq2 6191 | . . . . . . 7 ⊢ (𝐴 = ∅ → (#‘𝐴) = (#‘∅)) | |
7 | hash0 13158 | . . . . . . 7 ⊢ (#‘∅) = 0 | |
8 | 6, 7 | syl6eq 2672 | . . . . . 6 ⊢ (𝐴 = ∅ → (#‘𝐴) = 0) |
9 | 8 | oveq2d 6666 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐵↑(#‘𝐴)) = (𝐵↑0)) |
10 | 5, 9 | eqeq12d 2637 | . . . 4 ⊢ (𝐴 = ∅ → (∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(#‘𝐴)) ↔ 1 = (𝐵↑0))) |
11 | 2, 10 | syl5ibrcom 237 | . . 3 ⊢ (𝐵 ∈ ℂ → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(#‘𝐴)))) |
12 | 11 | adantl 482 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(#‘𝐴)))) |
13 | eqidd 2623 | . . . . . . 7 ⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = 𝐵) | |
14 | simprl 794 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈ ℕ) | |
15 | simprr 796 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) | |
16 | simpllr 799 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
17 | simpllr 799 | . . . . . . . 8 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 𝐵 ∈ ℂ) | |
18 | elfznn 12370 | . . . . . . . . 9 ⊢ (𝑛 ∈ (1...(#‘𝐴)) → 𝑛 ∈ ℕ) | |
19 | 18 | adantl 482 | . . . . . . . 8 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 𝑛 ∈ ℕ) |
20 | fvconst2g 6467 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵) | |
21 | 17, 19, 20 | syl2anc 693 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵) |
22 | 13, 14, 15, 16, 21 | fprod 14671 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 𝐵 = (seq1( · , (ℕ × {𝐵}))‘(#‘𝐴))) |
23 | expnnval 12863 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ (#‘𝐴) ∈ ℕ) → (𝐵↑(#‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(#‘𝐴))) | |
24 | 23 | ad2ant2lr 784 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐵↑(#‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(#‘𝐴))) |
25 | 22, 24 | eqtr4d 2659 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(#‘𝐴))) |
26 | 25 | expr 643 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(#‘𝐴)))) |
27 | 26 | exlimdv 1861 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(#‘𝐴)))) |
28 | 27 | expimpd 629 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(#‘𝐴)))) |
29 | fz1f1o 14441 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) | |
30 | 29 | adantr 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
31 | 12, 28, 30 | mpjaod 396 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(#‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∅c0 3915 {csn 4177 × cxp 5112 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 ℂcc 9934 0cc0 9936 1c1 9937 · cmul 9941 ℕcn 11020 ...cfz 12326 seqcseq 12801 ↑cexp 12860 #chash 13117 ∏cprod 14635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-prod 14636 |
This theorem is referenced by: risefallfac 14755 gausslemma2dlem5 25096 gausslemma2dlem6 25097 breprexpnat 30712 circlemethnat 30719 circlevma 30720 circlemethhgt 30721 bcprod 31624 etransclem23 40474 hoicvrrex 40770 ovnhoilem1 40815 vonsn 40905 |
Copyright terms: Public domain | W3C validator |