MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregord13 Structured version   Visualization version   GIF version

Theorem frgrregord13 27254
Description: If a nonempty finite friendship graph is 𝐾-regular, then it must have order 1 or 3. Special case of frgrregord013 27253. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrregord13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))

Proof of Theorem frgrregord13
StepHypRef Expression
1 simpl1 1064 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FriendGraph )
2 simpl2 1065 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin)
3 simpr 477 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
4 frgrreggt1.v . . . 4 𝑉 = (Vtx‘𝐺)
54frgrregord013 27253 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
61, 2, 3, 5syl3anc 1326 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
7 hasheq0 13154 . . . . . . . . 9 (𝑉 ∈ Fin → ((#‘𝑉) = 0 ↔ 𝑉 = ∅))
8 eqneqall 2805 . . . . . . . . 9 (𝑉 = ∅ → (𝑉 ≠ ∅ → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
97, 8syl6bi 243 . . . . . . . 8 (𝑉 ∈ Fin → ((#‘𝑉) = 0 → (𝑉 ≠ ∅ → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
109com23 86 . . . . . . 7 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
1110a1i 11 . . . . . 6 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
12113imp 1256 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1312adantr 481 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1413com12 32 . . 3 ((#‘𝑉) = 0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
15 orc 400 . . . 4 ((#‘𝑉) = 1 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
1615a1d 25 . . 3 ((#‘𝑉) = 1 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
17 olc 399 . . . 4 ((#‘𝑉) = 3 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
1817a1d 25 . . 3 ((#‘𝑉) = 3 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1914, 16, 183jaoi 1391 . 2 (((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
206, 19mpcom 38 1 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794  c0 3915   class class class wbr 4653  cfv 5888  Fincfn 7955  0cc0 9936  1c1 9937  3c3 11071  #chash 13117  Vtxcvtx 25874   RegUSGraph crusgr 26452   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-reps 13306  df-csh 13535  df-s2 13593  df-s3 13594  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsn 26725  df-wspthsnon 26726  df-clwwlks 26877  df-clwwlksn 26878  df-conngr 27047  df-frgr 27121
This theorem is referenced by:  frgrogt3nreg  27255
  Copyright terms: Public domain W3C validator