MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrogt3nreg Structured version   Visualization version   GIF version

Theorem frgrogt3nreg 27255
Description: If a finite friendship graph has an order greater than 3, it cannot be 𝑘-regular for any 𝑘. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrogt3nreg ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
Distinct variable groups:   𝑘,𝐺   𝑘,𝑉

Proof of Theorem frgrogt3nreg
StepHypRef Expression
1 simp1 1061 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → 𝐺 ∈ FriendGraph )
2 simp2 1062 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → 𝑉 ∈ Fin)
3 hashcl 13147 . . . . . . . . . . 11 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
4 0red 10041 . . . . . . . . . . . . . 14 ((#‘𝑉) ∈ ℕ0 → 0 ∈ ℝ)
5 3re 11094 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
65a1i 11 . . . . . . . . . . . . . . . . . 18 ((#‘𝑉) ∈ ℕ0 → 3 ∈ ℝ)
7 nn0re 11301 . . . . . . . . . . . . . . . . . 18 ((#‘𝑉) ∈ ℕ0 → (#‘𝑉) ∈ ℝ)
84, 6, 73jca 1242 . . . . . . . . . . . . . . . . 17 ((#‘𝑉) ∈ ℕ0 → (0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑉) ∈ ℝ))
98adantr 481 . . . . . . . . . . . . . . . 16 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑉) ∈ ℝ))
10 3pos 11114 . . . . . . . . . . . . . . . . 17 0 < 3
1110a1i 11 . . . . . . . . . . . . . . . 16 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 0 < 3)
12 simpr 477 . . . . . . . . . . . . . . . 16 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 3 < (#‘𝑉))
13 lttr 10114 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑉) ∈ ℝ) → ((0 < 3 ∧ 3 < (#‘𝑉)) → 0 < (#‘𝑉)))
1413imp 445 . . . . . . . . . . . . . . . 16 (((0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑉) ∈ ℝ) ∧ (0 < 3 ∧ 3 < (#‘𝑉))) → 0 < (#‘𝑉))
159, 11, 12, 14syl12anc 1324 . . . . . . . . . . . . . . 15 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 0 < (#‘𝑉))
1615ex 450 . . . . . . . . . . . . . 14 ((#‘𝑉) ∈ ℕ0 → (3 < (#‘𝑉) → 0 < (#‘𝑉)))
17 ltne 10134 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 < (#‘𝑉)) → (#‘𝑉) ≠ 0)
184, 16, 17syl6an 568 . . . . . . . . . . . . 13 ((#‘𝑉) ∈ ℕ0 → (3 < (#‘𝑉) → (#‘𝑉) ≠ 0))
19 hasheq0 13154 . . . . . . . . . . . . . . 15 (𝑉 ∈ Fin → ((#‘𝑉) = 0 ↔ 𝑉 = ∅))
2019necon3bid 2838 . . . . . . . . . . . . . 14 (𝑉 ∈ Fin → ((#‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
2120biimpcd 239 . . . . . . . . . . . . 13 ((#‘𝑉) ≠ 0 → (𝑉 ∈ Fin → 𝑉 ≠ ∅))
2218, 21syl6 35 . . . . . . . . . . . 12 ((#‘𝑉) ∈ ℕ0 → (3 < (#‘𝑉) → (𝑉 ∈ Fin → 𝑉 ≠ ∅)))
2322com23 86 . . . . . . . . . . 11 ((#‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (3 < (#‘𝑉) → 𝑉 ≠ ∅)))
243, 23mpcom 38 . . . . . . . . . 10 (𝑉 ∈ Fin → (3 < (#‘𝑉) → 𝑉 ≠ ∅))
2524a1i 11 . . . . . . . . 9 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (3 < (#‘𝑉) → 𝑉 ≠ ∅)))
26253imp 1256 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → 𝑉 ≠ ∅)
271, 2, 263jca 1242 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
2827ad2antrl 764 . . . . . 6 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
29 simpl 473 . . . . . 6 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → 𝐺 RegUSGraph 𝑘)
30 frgrreggt1.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3130frgrregord13 27254 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝑘) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
3228, 29, 31syl2anc 693 . . . . 5 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
33 1red 10055 . . . . . . . . . . . . 13 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 1 ∈ ℝ)
345a1i 11 . . . . . . . . . . . . . 14 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 3 ∈ ℝ)
357adantr 481 . . . . . . . . . . . . . 14 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (#‘𝑉) ∈ ℝ)
36 1lt3 11196 . . . . . . . . . . . . . . 15 1 < 3
3736a1i 11 . . . . . . . . . . . . . 14 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 1 < 3)
3833, 34, 35, 37, 12lttrd 10198 . . . . . . . . . . . . 13 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 1 < (#‘𝑉))
3933, 38gtned 10172 . . . . . . . . . . . 12 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (#‘𝑉) ≠ 1)
40 eqneqall 2805 . . . . . . . . . . . 12 ((#‘𝑉) = 1 → ((#‘𝑉) ≠ 1 → ¬ 𝐺 RegUSGraph 𝑘))
4139, 40syl5com 31 . . . . . . . . . . 11 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → ((#‘𝑉) = 1 → ¬ 𝐺 RegUSGraph 𝑘))
42 ltne 10134 . . . . . . . . . . . . 13 ((3 ∈ ℝ ∧ 3 < (#‘𝑉)) → (#‘𝑉) ≠ 3)
436, 42sylan 488 . . . . . . . . . . . 12 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (#‘𝑉) ≠ 3)
44 eqneqall 2805 . . . . . . . . . . . 12 ((#‘𝑉) = 3 → ((#‘𝑉) ≠ 3 → ¬ 𝐺 RegUSGraph 𝑘))
4543, 44syl5com 31 . . . . . . . . . . 11 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → ((#‘𝑉) = 3 → ¬ 𝐺 RegUSGraph 𝑘))
4641, 45jaod 395 . . . . . . . . . 10 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
4746ex 450 . . . . . . . . 9 ((#‘𝑉) ∈ ℕ0 → (3 < (#‘𝑉) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)))
483, 47syl 17 . . . . . . . 8 (𝑉 ∈ Fin → (3 < (#‘𝑉) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)))
4948a1i 11 . . . . . . 7 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (3 < (#‘𝑉) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))))
50493imp 1256 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
5150ad2antrl 764 . . . . 5 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
5232, 51mpd 15 . . . 4 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → ¬ 𝐺 RegUSGraph 𝑘)
5352ex 450 . . 3 (𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘))
54 ax-1 6 . . 3 𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘))
5553, 54pm2.61i 176 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘)
5655ralrimiva 2966 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  c0 3915   class class class wbr 4653  cfv 5888  Fincfn 7955  cr 9935  0cc0 9936  1c1 9937   < clt 10074  3c3 11071  0cn0 11292  #chash 13117  Vtxcvtx 25874   RegUSGraph crusgr 26452   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-reps 13306  df-csh 13535  df-s2 13593  df-s3 13594  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsn 26725  df-wspthsnon 26726  df-clwwlks 26877  df-clwwlksn 26878  df-conngr 27047  df-frgr 27121
This theorem is referenced by:  friendshipgt3  27256
  Copyright terms: Public domain W3C validator