MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1lem Structured version   Visualization version   GIF version

Theorem fta1lem 24062
Description: Lemma for fta1 24063. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
fta1.1 𝑅 = (𝐹 “ {0})
fta1.2 (𝜑𝐷 ∈ ℕ0)
fta1.3 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
fta1.4 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
fta1.5 (𝜑𝐴 ∈ (𝐹 “ {0}))
fta1.6 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (#‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
Assertion
Ref Expression
fta1lem (𝜑 → (𝑅 ∈ Fin ∧ (#‘𝑅) ≤ (deg‘𝐹)))
Distinct variable groups:   𝐴,𝑔   𝐷,𝑔   𝑔,𝐹
Allowed substitution hints:   𝜑(𝑔)   𝑅(𝑔)

Proof of Theorem fta1lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fta1.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
2 eldifsn 4317 . . . . . . . . . 10 (𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
31, 2sylib 208 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
43simpld 475 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℂ))
5 fta1.5 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐹 “ {0}))
6 plyf 23954 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℂ) → 𝐹:ℂ⟶ℂ)
7 ffn 6045 . . . . . . . . . . 11 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
8 fniniseg 6338 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
94, 6, 7, 84syl 19 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
105, 9mpbid 222 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0))
1110simpld 475 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1210simprd 479 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 0)
13 eqid 2622 . . . . . . . . 9 (Xp𝑓 − (ℂ × {𝐴})) = (Xp𝑓 − (ℂ × {𝐴}))
1413facth 24061 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))))
154, 11, 12, 14syl3anc 1326 . . . . . . 7 (𝜑𝐹 = ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))))
1615cnveqd 5298 . . . . . 6 (𝜑𝐹 = ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))))
1716imaeq1d 5465 . . . . 5 (𝜑 → (𝐹 “ {0}) = (((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) “ {0}))
18 cnex 10017 . . . . . . 7 ℂ ∈ V
1918a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
20 ssid 3624 . . . . . . . . 9 ℂ ⊆ ℂ
21 ax-1cn 9994 . . . . . . . . 9 1 ∈ ℂ
22 plyid 23965 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
2320, 21, 22mp2an 708 . . . . . . . 8 Xp ∈ (Poly‘ℂ)
24 plyconst 23962 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
2520, 11, 24sylancr 695 . . . . . . . 8 (𝜑 → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
26 plysubcl 23978 . . . . . . . 8 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
2723, 25, 26sylancr 695 . . . . . . 7 (𝜑 → (Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
28 plyf 23954 . . . . . . 7 ((Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ) → (Xp𝑓 − (ℂ × {𝐴})):ℂ⟶ℂ)
2927, 28syl 17 . . . . . 6 (𝜑 → (Xp𝑓 − (ℂ × {𝐴})):ℂ⟶ℂ)
3013plyremlem 24059 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {𝐴}))) = 1 ∧ ((Xp𝑓 − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3111, 30syl 17 . . . . . . . . . . 11 (𝜑 → ((Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {𝐴}))) = 1 ∧ ((Xp𝑓 − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3231simp2d 1074 . . . . . . . . . 10 (𝜑 → (deg‘(Xp𝑓 − (ℂ × {𝐴}))) = 1)
33 ax-1ne0 10005 . . . . . . . . . . 11 1 ≠ 0
3433a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
3532, 34eqnetrd 2861 . . . . . . . . 9 (𝜑 → (deg‘(Xp𝑓 − (ℂ × {𝐴}))) ≠ 0)
36 fveq2 6191 . . . . . . . . . . 11 ((Xp𝑓 − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xp𝑓 − (ℂ × {𝐴}))) = (deg‘0𝑝))
37 dgr0 24018 . . . . . . . . . . 11 (deg‘0𝑝) = 0
3836, 37syl6eq 2672 . . . . . . . . . 10 ((Xp𝑓 − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xp𝑓 − (ℂ × {𝐴}))) = 0)
3938necon3i 2826 . . . . . . . . 9 ((deg‘(Xp𝑓 − (ℂ × {𝐴}))) ≠ 0 → (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝)
4035, 39syl 17 . . . . . . . 8 (𝜑 → (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝)
41 quotcl2 24057 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝) → (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
424, 27, 40, 41syl3anc 1326 . . . . . . 7 (𝜑 → (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
43 plyf 23954 . . . . . . 7 ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))):ℂ⟶ℂ)
4442, 43syl 17 . . . . . 6 (𝜑 → (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))):ℂ⟶ℂ)
45 ofmulrt 24037 . . . . . 6 ((ℂ ∈ V ∧ (Xp𝑓 − (ℂ × {𝐴})):ℂ⟶ℂ ∧ (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))):ℂ⟶ℂ) → (((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) “ {0}) = (((Xp𝑓 − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})))
4619, 29, 44, 45syl3anc 1326 . . . . 5 (𝜑 → (((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) “ {0}) = (((Xp𝑓 − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})))
4731simp3d 1075 . . . . . 6 (𝜑 → ((Xp𝑓 − (ℂ × {𝐴})) “ {0}) = {𝐴})
4847uneq1d 3766 . . . . 5 (𝜑 → (((Xp𝑓 − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) = ({𝐴} ∪ ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})))
4917, 46, 483eqtrd 2660 . . . 4 (𝜑 → (𝐹 “ {0}) = ({𝐴} ∪ ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})))
50 fta1.1 . . . 4 𝑅 = (𝐹 “ {0})
51 uncom 3757 . . . 4 (((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) = ({𝐴} ∪ ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}))
5249, 50, 513eqtr4g 2681 . . 3 (𝜑𝑅 = (((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}))
533simprd 479 . . . . . . . . 9 (𝜑𝐹 ≠ 0𝑝)
5415eqcomd 2628 . . . . . . . . 9 (𝜑 → ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) = 𝐹)
55 0cnd 10033 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
56 mul01 10215 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
5756adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑥 · 0) = 0)
5819, 29, 55, 55, 57caofid1 6927 . . . . . . . . . 10 (𝜑 → ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (ℂ × {0})) = (ℂ × {0}))
59 df-0p 23437 . . . . . . . . . . 11 0𝑝 = (ℂ × {0})
6059oveq2i 6661 . . . . . . . . . 10 ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · 0𝑝) = ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (ℂ × {0}))
6158, 60, 593eqtr4g 2681 . . . . . . . . 9 (𝜑 → ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · 0𝑝) = 0𝑝)
6253, 54, 613netr4d 2871 . . . . . . . 8 (𝜑 → ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) ≠ ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · 0𝑝))
63 oveq2 6658 . . . . . . . . 9 ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) = 0𝑝 → ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) = ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · 0𝑝))
6463necon3i 2826 . . . . . . . 8 (((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) ≠ ((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · 0𝑝) → (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ≠ 0𝑝)
6562, 64syl 17 . . . . . . 7 (𝜑 → (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ≠ 0𝑝)
66 eldifsn 4317 . . . . . . 7 ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ≠ 0𝑝))
6742, 65, 66sylanbrc 698 . . . . . 6 (𝜑 → (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}))
68 fta1.6 . . . . . 6 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (#‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
6921a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
70 dgrcl 23989 . . . . . . . . 9 ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) ∈ ℕ0)
7142, 70syl 17 . . . . . . . 8 (𝜑 → (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) ∈ ℕ0)
7271nn0cnd 11353 . . . . . . 7 (𝜑 → (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) ∈ ℂ)
73 fta1.2 . . . . . . . 8 (𝜑𝐷 ∈ ℕ0)
7473nn0cnd 11353 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
75 addcom 10222 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
7621, 74, 75sylancr 695 . . . . . . . 8 (𝜑 → (1 + 𝐷) = (𝐷 + 1))
7715fveq2d 6195 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (deg‘((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))))
78 fta1.4 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
79 eqid 2622 . . . . . . . . . . 11 (deg‘(Xp𝑓 − (ℂ × {𝐴}))) = (deg‘(Xp𝑓 − (ℂ × {𝐴})))
80 eqid 2622 . . . . . . . . . . 11 (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) = (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))
8179, 80dgrmul 24026 . . . . . . . . . 10 ((((Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝) ∧ ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ≠ 0𝑝)) → (deg‘((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))) = ((deg‘(Xp𝑓 − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))))
8227, 40, 42, 65, 81syl22anc 1327 . . . . . . . . 9 (𝜑 → (deg‘((Xp𝑓 − (ℂ × {𝐴})) ∘𝑓 · (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))) = ((deg‘(Xp𝑓 − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))))
8377, 78, 823eqtr3d 2664 . . . . . . . 8 (𝜑 → (𝐷 + 1) = ((deg‘(Xp𝑓 − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))))
8432oveq1d 6665 . . . . . . . 8 (𝜑 → ((deg‘(Xp𝑓 − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))) = (1 + (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))))
8576, 83, 843eqtrrd 2661 . . . . . . 7 (𝜑 → (1 + (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))) = (1 + 𝐷))
8669, 72, 74, 85addcanad 10241 . . . . . 6 (𝜑 → (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) = 𝐷)
87 fveq2 6191 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) → (deg‘𝑔) = (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))))
8887eqeq1d 2624 . . . . . . . 8 (𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) → ((deg‘𝑔) = 𝐷 ↔ (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) = 𝐷))
89 cnveq 5296 . . . . . . . . . . 11 (𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) → 𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))
9089imaeq1d 5465 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) → (𝑔 “ {0}) = ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}))
9190eleq1d 2686 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) → ((𝑔 “ {0}) ∈ Fin ↔ ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∈ Fin))
9290fveq2d 6195 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) → (#‘(𝑔 “ {0})) = (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})))
9392, 87breq12d 4666 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) → ((#‘(𝑔 “ {0})) ≤ (deg‘𝑔) ↔ (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))))
9491, 93anbi12d 747 . . . . . . . 8 (𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) → (((𝑔 “ {0}) ∈ Fin ∧ (#‘(𝑔 “ {0})) ≤ (deg‘𝑔)) ↔ (((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))))))
9588, 94imbi12d 334 . . . . . . 7 (𝑔 = (𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) → (((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (#‘(𝑔 “ {0})) ≤ (deg‘𝑔))) ↔ ((deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))))))
9695rspcv 3305 . . . . . 6 ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (#‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))))))
9767, 68, 86, 96syl3c 66 . . . . 5 (𝜑 → (((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))))))
9897simpld 475 . . . 4 (𝜑 → ((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∈ Fin)
99 snfi 8038 . . . 4 {𝐴} ∈ Fin
100 unfi 8227 . . . 4 ((((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10198, 99, 100sylancl 694 . . 3 (𝜑 → (((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10252, 101eqeltrd 2701 . 2 (𝜑𝑅 ∈ Fin)
10352fveq2d 6195 . . 3 (𝜑 → (#‘𝑅) = (#‘(((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})))
104 hashcl 13147 . . . . . 6 ((((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin → (#‘(((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
105101, 104syl 17 . . . . 5 (𝜑 → (#‘(((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
106105nn0red 11352 . . . 4 (𝜑 → (#‘(((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℝ)
107 hashcl 13147 . . . . . . 7 (((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∈ Fin → (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
10898, 107syl 17 . . . . . 6 (𝜑 → (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
109108nn0red 11352 . . . . 5 (𝜑 → (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ∈ ℝ)
110 peano2re 10209 . . . . 5 ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ∈ ℝ → ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
111109, 110syl 17 . . . 4 (𝜑 → ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
112 dgrcl 23989 . . . . . 6 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) ∈ ℕ0)
1134, 112syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
114113nn0red 11352 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℝ)
115 hashun2 13172 . . . . . 6 ((((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (#‘(((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) + (#‘{𝐴})))
11698, 99, 115sylancl 694 . . . . 5 (𝜑 → (#‘(((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) + (#‘{𝐴})))
117 hashsng 13159 . . . . . . 7 (𝐴 ∈ ℂ → (#‘{𝐴}) = 1)
11811, 117syl 17 . . . . . 6 (𝜑 → (#‘{𝐴}) = 1)
119118oveq2d 6666 . . . . 5 (𝜑 → ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) + (#‘{𝐴})) = ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) + 1))
120116, 119breqtrd 4679 . . . 4 (𝜑 → (#‘(((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) + 1))
12173nn0red 11352 . . . . . 6 (𝜑𝐷 ∈ ℝ)
122 1red 10055 . . . . . 6 (𝜑 → 1 ∈ ℝ)
12397simprd 479 . . . . . . 7 (𝜑 → (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xp𝑓 − (ℂ × {𝐴})))))
124123, 86breqtrd 4679 . . . . . 6 (𝜑 → (#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) ≤ 𝐷)
125109, 121, 122, 124leadd1dd 10641 . . . . 5 (𝜑 → ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (𝐷 + 1))
126125, 78breqtrrd 4681 . . . 4 (𝜑 → ((#‘((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (deg‘𝐹))
127106, 111, 114, 120, 126letrd 10194 . . 3 (𝜑 → (#‘(((𝐹 quot (Xp𝑓 − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ (deg‘𝐹))
128103, 127eqbrtrd 4675 . 2 (𝜑 → (#‘𝑅) ≤ (deg‘𝐹))
129102, 128jca 554 1 (𝜑 → (𝑅 ∈ Fin ∧ (#‘𝑅) ≤ (deg‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cun 3572  wss 3574  {csn 4177   class class class wbr 4653   × cxp 5112  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  0cn0 11292  #chash 13117  0𝑝c0p 23436  Polycply 23940  Xpcidp 23941  degcdgr 23943   quot cquot 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  fta1  24063
  Copyright terms: Public domain W3C validator