MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1lem Structured version   Visualization version   Unicode version

Theorem fta1lem 24062
Description: Lemma for fta1 24063. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
fta1.1  |-  R  =  ( `' F " { 0 } )
fta1.2  |-  ( ph  ->  D  e.  NN0 )
fta1.3  |-  ( ph  ->  F  e.  ( (Poly `  CC )  \  {
0p } ) )
fta1.4  |-  ( ph  ->  (deg `  F )  =  ( D  + 
1 ) )
fta1.5  |-  ( ph  ->  A  e.  ( `' F " { 0 } ) )
fta1.6  |-  ( ph  ->  A. g  e.  ( (Poly `  CC )  \  { 0p }
) ( (deg `  g )  =  D  ->  ( ( `' g " { 0 } )  e.  Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
Assertion
Ref Expression
fta1lem  |-  ( ph  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) )
Distinct variable groups:    A, g    D, g    g, F
Allowed substitution hints:    ph( g)    R( g)

Proof of Theorem fta1lem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fta1.3 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( (Poly `  CC )  \  {
0p } ) )
2 eldifsn 4317 . . . . . . . . . 10  |-  ( F  e.  ( (Poly `  CC )  \  { 0p } )  <->  ( F  e.  (Poly `  CC )  /\  F  =/=  0p ) )
31, 2sylib 208 . . . . . . . . 9  |-  ( ph  ->  ( F  e.  (Poly `  CC )  /\  F  =/=  0p ) )
43simpld 475 . . . . . . . 8  |-  ( ph  ->  F  e.  (Poly `  CC ) )
5 fta1.5 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ( `' F " { 0 } ) )
6 plyf 23954 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  CC )  ->  F : CC --> CC )
7 ffn 6045 . . . . . . . . . . 11  |-  ( F : CC --> CC  ->  F  Fn  CC )
8 fniniseg 6338 . . . . . . . . . . 11  |-  ( F  Fn  CC  ->  ( A  e.  ( `' F " { 0 } )  <->  ( A  e.  CC  /\  ( F `
 A )  =  0 ) ) )
94, 6, 7, 84syl 19 . . . . . . . . . 10  |-  ( ph  ->  ( A  e.  ( `' F " { 0 } )  <->  ( A  e.  CC  /\  ( F `
 A )  =  0 ) ) )
105, 9mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( A  e.  CC  /\  ( F `  A
)  =  0 ) )
1110simpld 475 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1210simprd 479 . . . . . . . 8  |-  ( ph  ->  ( F `  A
)  =  0 )
13 eqid 2622 . . . . . . . . 9  |-  ( Xp  oF  -  ( CC  X.  { A } ) )  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
1413facth 24061 . . . . . . . 8  |-  ( ( F  e.  (Poly `  CC )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  =  ( ( Xp  oF  -  ( CC  X.  { A } ) )  oF  x.  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) )
154, 11, 12, 14syl3anc 1326 . . . . . . 7  |-  ( ph  ->  F  =  ( ( Xp  oF  -  ( CC  X.  { A } ) )  oF  x.  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) )
1615cnveqd 5298 . . . . . 6  |-  ( ph  ->  `' F  =  `' ( ( Xp  oF  -  ( CC  X.  { A }
) )  oF  x.  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) ) )
1716imaeq1d 5465 . . . . 5  |-  ( ph  ->  ( `' F " { 0 } )  =  ( `' ( ( Xp  oF  -  ( CC 
X.  { A }
) )  oF  x.  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) ) " {
0 } ) )
18 cnex 10017 . . . . . . 7  |-  CC  e.  _V
1918a1i 11 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
20 ssid 3624 . . . . . . . . 9  |-  CC  C_  CC
21 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
22 plyid 23965 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  1  e.  CC )  ->  Xp  e.  (Poly `  CC ) )
2320, 21, 22mp2an 708 . . . . . . . 8  |-  Xp  e.  (Poly `  CC )
24 plyconst 23962 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  A  e.  CC )  ->  ( CC  X.  { A }
)  e.  (Poly `  CC ) )
2520, 11, 24sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( CC  X.  { A } )  e.  (Poly `  CC ) )
26 plysubcl 23978 . . . . . . . 8  |-  ( ( Xp  e.  (Poly `  CC )  /\  ( CC  X.  { A }
)  e.  (Poly `  CC ) )  ->  (
Xp  oF  -  ( CC  X.  { A } ) )  e.  (Poly `  CC ) )
2723, 25, 26sylancr 695 . . . . . . 7  |-  ( ph  ->  ( Xp  oF  -  ( CC 
X.  { A }
) )  e.  (Poly `  CC ) )
28 plyf 23954 . . . . . . 7  |-  ( ( Xp  oF  -  ( CC  X.  { A } ) )  e.  (Poly `  CC )  ->  ( Xp  oF  -  ( CC  X.  { A }
) ) : CC --> CC )
2927, 28syl 17 . . . . . 6  |-  ( ph  ->  ( Xp  oF  -  ( CC 
X.  { A }
) ) : CC --> CC )
3013plyremlem 24059 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( Xp  oF  -  ( CC 
X.  { A }
) )  e.  (Poly `  CC )  /\  (deg `  ( Xp  oF  -  ( CC 
X.  { A }
) ) )  =  1  /\  ( `' ( Xp  oF  -  ( CC 
X.  { A }
) ) " {
0 } )  =  { A } ) )
3111, 30syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Xp  oF  -  ( CC  X.  { A }
) )  e.  (Poly `  CC )  /\  (deg `  ( Xp  oF  -  ( CC 
X.  { A }
) ) )  =  1  /\  ( `' ( Xp  oF  -  ( CC 
X.  { A }
) ) " {
0 } )  =  { A } ) )
3231simp2d 1074 . . . . . . . . . 10  |-  ( ph  ->  (deg `  ( Xp  oF  -  ( CC  X.  { A }
) ) )  =  1 )
33 ax-1ne0 10005 . . . . . . . . . . 11  |-  1  =/=  0
3433a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  =/=  0 )
3532, 34eqnetrd 2861 . . . . . . . . 9  |-  ( ph  ->  (deg `  ( Xp  oF  -  ( CC  X.  { A }
) ) )  =/=  0 )
36 fveq2 6191 . . . . . . . . . . 11  |-  ( ( Xp  oF  -  ( CC  X.  { A } ) )  =  0p  -> 
(deg `  ( Xp  oF  -  ( CC  X.  { A }
) ) )  =  (deg `  0p
) )
37 dgr0 24018 . . . . . . . . . . 11  |-  (deg ` 
0p )  =  0
3836, 37syl6eq 2672 . . . . . . . . . 10  |-  ( ( Xp  oF  -  ( CC  X.  { A } ) )  =  0p  -> 
(deg `  ( Xp  oF  -  ( CC  X.  { A }
) ) )  =  0 )
3938necon3i 2826 . . . . . . . . 9  |-  ( (deg
`  ( Xp  oF  -  ( CC  X.  { A }
) ) )  =/=  0  ->  ( Xp  oF  -  ( CC  X.  { A }
) )  =/=  0p )
4035, 39syl 17 . . . . . . . 8  |-  ( ph  ->  ( Xp  oF  -  ( CC 
X.  { A }
) )  =/=  0p )
41 quotcl2 24057 . . . . . . . 8  |-  ( ( F  e.  (Poly `  CC )  /\  (
Xp  oF  -  ( CC  X.  { A } ) )  e.  (Poly `  CC )  /\  ( Xp  oF  -  ( CC  X.  { A }
) )  =/=  0p )  ->  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) )  e.  (Poly `  CC )
)
424, 27, 40, 41syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )  e.  (Poly `  CC ) )
43 plyf 23954 . . . . . . 7  |-  ( ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) )  e.  (Poly `  CC )  ->  ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) ) : CC --> CC )
4442, 43syl 17 . . . . . 6  |-  ( ph  ->  ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) ) : CC --> CC )
45 ofmulrt 24037 . . . . . 6  |-  ( ( CC  e.  _V  /\  ( Xp  oF  -  ( CC 
X.  { A }
) ) : CC --> CC  /\  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) : CC --> CC )  ->  ( `' ( ( Xp  oF  -  ( CC 
X.  { A }
) )  oF  x.  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) ) " {
0 } )  =  ( ( `' ( Xp  oF  -  ( CC  X.  { A } ) )
" { 0 } )  u.  ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )
" { 0 } ) ) )
4619, 29, 44, 45syl3anc 1326 . . . . 5  |-  ( ph  ->  ( `' ( ( Xp  oF  -  ( CC  X.  { A } ) )  oF  x.  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) )
" { 0 } )  =  ( ( `' ( Xp  oF  -  ( CC  X.  { A }
) ) " {
0 } )  u.  ( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } ) ) )
4731simp3d 1075 . . . . . 6  |-  ( ph  ->  ( `' ( Xp  oF  -  ( CC  X.  { A } ) ) " { 0 } )  =  { A }
)
4847uneq1d 3766 . . . . 5  |-  ( ph  ->  ( ( `' ( Xp  oF  -  ( CC  X.  { A } ) )
" { 0 } )  u.  ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )
" { 0 } ) )  =  ( { A }  u.  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) ) )
4917, 46, 483eqtrd 2660 . . . 4  |-  ( ph  ->  ( `' F " { 0 } )  =  ( { A }  u.  ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) " { 0 } ) ) )
50 fta1.1 . . . 4  |-  R  =  ( `' F " { 0 } )
51 uncom 3757 . . . 4  |-  ( ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } )  u.  { A } )  =  ( { A }  u.  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )
5249, 50, 513eqtr4g 2681 . . 3  |-  ( ph  ->  R  =  ( ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } )  u.  { A } ) )
533simprd 479 . . . . . . . . 9  |-  ( ph  ->  F  =/=  0p )
5415eqcomd 2628 . . . . . . . . 9  |-  ( ph  ->  ( ( Xp  oF  -  ( CC  X.  { A }
) )  oF  x.  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) )  =  F )
55 0cnd 10033 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  CC )
56 mul01 10215 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
x  x.  0 )  =  0 )
5756adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( x  x.  0 )  =  0 )
5819, 29, 55, 55, 57caofid1 6927 . . . . . . . . . 10  |-  ( ph  ->  ( ( Xp  oF  -  ( CC  X.  { A }
) )  oF  x.  ( CC  X.  { 0 } ) )  =  ( CC 
X.  { 0 } ) )
59 df-0p 23437 . . . . . . . . . . 11  |-  0p  =  ( CC  X.  { 0 } )
6059oveq2i 6661 . . . . . . . . . 10  |-  ( ( Xp  oF  -  ( CC  X.  { A } ) )  oF  x.  0p )  =  ( ( Xp  oF  -  ( CC 
X.  { A }
) )  oF  x.  ( CC  X.  { 0 } ) )
6158, 60, 593eqtr4g 2681 . . . . . . . . 9  |-  ( ph  ->  ( ( Xp  oF  -  ( CC  X.  { A }
) )  oF  x.  0p )  =  0p )
6253, 54, 613netr4d 2871 . . . . . . . 8  |-  ( ph  ->  ( ( Xp  oF  -  ( CC  X.  { A }
) )  oF  x.  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) )  =/=  (
( Xp  oF  -  ( CC 
X.  { A }
) )  oF  x.  0p ) )
63 oveq2 6658 . . . . . . . . 9  |-  ( ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) )  =  0p  ->  (
( Xp  oF  -  ( CC 
X.  { A }
) )  oF  x.  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) )  =  ( ( Xp  oF  -  ( CC 
X.  { A }
) )  oF  x.  0p ) )
6463necon3i 2826 . . . . . . . 8  |-  ( ( ( Xp  oF  -  ( CC 
X.  { A }
) )  oF  x.  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) )  =/=  (
( Xp  oF  -  ( CC 
X.  { A }
) )  oF  x.  0p )  ->  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  =/=  0p )
6562, 64syl 17 . . . . . . 7  |-  ( ph  ->  ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )  =/=  0p )
66 eldifsn 4317 . . . . . . 7  |-  ( ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) )  e.  ( (Poly `  CC )  \  { 0p } )  <->  ( ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) )  e.  (Poly `  CC )  /\  ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )  =/=  0p ) )
6742, 65, 66sylanbrc 698 . . . . . 6  |-  ( ph  ->  ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )  e.  ( (Poly `  CC )  \  { 0p } ) )
68 fta1.6 . . . . . 6  |-  ( ph  ->  A. g  e.  ( (Poly `  CC )  \  { 0p }
) ( (deg `  g )  =  D  ->  ( ( `' g " { 0 } )  e.  Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
6921a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
70 dgrcl 23989 . . . . . . . . 9  |-  ( ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) )  e.  (Poly `  CC )  ->  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) )  e.  NN0 )
7142, 70syl 17 . . . . . . . 8  |-  ( ph  ->  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) )  e.  NN0 )
7271nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) )  e.  CC )
73 fta1.2 . . . . . . . 8  |-  ( ph  ->  D  e.  NN0 )
7473nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  D  e.  CC )
75 addcom 10222 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  D  e.  CC )  ->  ( 1  +  D
)  =  ( D  +  1 ) )
7621, 74, 75sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( 1  +  D
)  =  ( D  +  1 ) )
7715fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  (deg `  F )  =  (deg `  ( (
Xp  oF  -  ( CC  X.  { A } ) )  oF  x.  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) ) )
78 fta1.4 . . . . . . . . 9  |-  ( ph  ->  (deg `  F )  =  ( D  + 
1 ) )
79 eqid 2622 . . . . . . . . . . 11  |-  (deg `  ( Xp  oF  -  ( CC 
X.  { A }
) ) )  =  (deg `  ( Xp  oF  -  ( CC  X.  { A }
) ) )
80 eqid 2622 . . . . . . . . . . 11  |-  (deg `  ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) )  =  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) )
8179, 80dgrmul 24026 . . . . . . . . . 10  |-  ( ( ( ( Xp  oF  -  ( CC  X.  { A }
) )  e.  (Poly `  CC )  /\  (
Xp  oF  -  ( CC  X.  { A } ) )  =/=  0p )  /\  ( ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) )  e.  (Poly `  CC )  /\  ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )  =/=  0p ) )  ->  (deg `  (
( Xp  oF  -  ( CC 
X.  { A }
) )  oF  x.  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) ) )  =  ( (deg `  (
Xp  oF  -  ( CC  X.  { A } ) ) )  +  (deg `  ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) ) ) )
8227, 40, 42, 65, 81syl22anc 1327 . . . . . . . . 9  |-  ( ph  ->  (deg `  ( (
Xp  oF  -  ( CC  X.  { A } ) )  oF  x.  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) )  =  ( (deg
`  ( Xp  oF  -  ( CC  X.  { A }
) ) )  +  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) ) )
8377, 78, 823eqtr3d 2664 . . . . . . . 8  |-  ( ph  ->  ( D  +  1 )  =  ( (deg
`  ( Xp  oF  -  ( CC  X.  { A }
) ) )  +  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) ) )
8432oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( (deg `  (
Xp  oF  -  ( CC  X.  { A } ) ) )  +  (deg `  ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) ) )  =  ( 1  +  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) ) )
8576, 83, 843eqtrrd 2661 . . . . . . 7  |-  ( ph  ->  ( 1  +  (deg
`  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) ) )  =  ( 1  +  D
) )
8669, 72, 74, 85addcanad 10241 . . . . . 6  |-  ( ph  ->  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) )  =  D )
87 fveq2 6191 . . . . . . . . 9  |-  ( g  =  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  ->  (deg `  g
)  =  (deg `  ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) ) )
8887eqeq1d 2624 . . . . . . . 8  |-  ( g  =  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  ->  ( (deg `  g )  =  D  <-> 
(deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) )  =  D ) )
89 cnveq 5296 . . . . . . . . . . 11  |-  ( g  =  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  ->  `' g  =  `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) )
9089imaeq1d 5465 . . . . . . . . . 10  |-  ( g  =  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  ->  ( `' g " { 0 } )  =  ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )
" { 0 } ) )
9190eleq1d 2686 . . . . . . . . 9  |-  ( g  =  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  ->  ( ( `' g " {
0 } )  e. 
Fin 
<->  ( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  e.  Fin ) )
9290fveq2d 6195 . . . . . . . . . 10  |-  ( g  =  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  ->  ( # `  ( `' g " {
0 } ) )  =  ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) ) )
9392, 87breq12d 4666 . . . . . . . . 9  |-  ( g  =  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  ->  ( ( # `
 ( `' g
" { 0 } ) )  <_  (deg `  g )  <->  ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  <_ 
(deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) ) )
9491, 93anbi12d 747 . . . . . . . 8  |-  ( g  =  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  ->  ( (
( `' g " { 0 } )  e.  Fin  /\  ( # `
 ( `' g
" { 0 } ) )  <_  (deg `  g ) )  <->  ( ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } )  e.  Fin  /\  ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  <_ 
(deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) ) ) )
9588, 94imbi12d 334 . . . . . . 7  |-  ( g  =  ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) )  ->  ( (
(deg `  g )  =  D  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  <->  ( (deg `  ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) ) )  =  D  -> 
( ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) " { 0 } )  e.  Fin  /\  ( # `
 ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) " { 0 } ) )  <_  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) ) ) ) )
9695rspcv 3305 . . . . . 6  |-  ( ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) )  e.  ( (Poly `  CC )  \  { 0p } )  ->  ( A. g  e.  (
(Poly `  CC )  \  { 0p }
) ( (deg `  g )  =  D  ->  ( ( `' g " { 0 } )  e.  Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) )  =  D  ->  (
( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  e.  Fin  /\  ( # `
 ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) " { 0 } ) )  <_  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) ) ) ) )
9767, 68, 86, 96syl3c 66 . . . . 5  |-  ( ph  ->  ( ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) " { 0 } )  e.  Fin  /\  ( # `
 ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) " { 0 } ) )  <_  (deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) ) )
9897simpld 475 . . . 4  |-  ( ph  ->  ( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  e.  Fin )
99 snfi 8038 . . . 4  |-  { A }  e.  Fin
100 unfi 8227 . . . 4  |-  ( ( ( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  e.  Fin  /\  { A }  e.  Fin )  ->  ( ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )
" { 0 } )  u.  { A } )  e.  Fin )
10198, 99, 100sylancl 694 . . 3  |-  ( ph  ->  ( ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) " { 0 } )  u.  { A }
)  e.  Fin )
10252, 101eqeltrd 2701 . 2  |-  ( ph  ->  R  e.  Fin )
10352fveq2d 6195 . . 3  |-  ( ph  ->  ( # `  R
)  =  ( # `  ( ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) " { 0 } )  u.  { A }
) ) )
104 hashcl 13147 . . . . . 6  |-  ( ( ( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  u.  { A }
)  e.  Fin  ->  (
# `  ( ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } )  u.  { A } ) )  e. 
NN0 )
105101, 104syl 17 . . . . 5  |-  ( ph  ->  ( # `  (
( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  u.  { A }
) )  e.  NN0 )
106105nn0red 11352 . . . 4  |-  ( ph  ->  ( # `  (
( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  u.  { A }
) )  e.  RR )
107 hashcl 13147 . . . . . . 7  |-  ( ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } )  e.  Fin  ->  ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  e. 
NN0 )
10898, 107syl 17 . . . . . 6  |-  ( ph  ->  ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  e. 
NN0 )
109108nn0red 11352 . . . . 5  |-  ( ph  ->  ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  e.  RR )
110 peano2re 10209 . . . . 5  |-  ( (
# `  ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A }
) ) ) " { 0 } ) )  e.  RR  ->  ( ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  +  1 )  e.  RR )
111109, 110syl 17 . . . 4  |-  ( ph  ->  ( ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  +  1 )  e.  RR )
112 dgrcl 23989 . . . . . 6  |-  ( F  e.  (Poly `  CC )  ->  (deg `  F
)  e.  NN0 )
1134, 112syl 17 . . . . 5  |-  ( ph  ->  (deg `  F )  e.  NN0 )
114113nn0red 11352 . . . 4  |-  ( ph  ->  (deg `  F )  e.  RR )
115 hashun2 13172 . . . . . 6  |-  ( ( ( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  e.  Fin  /\  { A }  e.  Fin )  ->  ( # `  (
( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  u.  { A }
) )  <_  (
( # `  ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )
" { 0 } ) )  +  (
# `  { A } ) ) )
11698, 99, 115sylancl 694 . . . . 5  |-  ( ph  ->  ( # `  (
( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  u.  { A }
) )  <_  (
( # `  ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )
" { 0 } ) )  +  (
# `  { A } ) ) )
117 hashsng 13159 . . . . . . 7  |-  ( A  e.  CC  ->  ( # `
 { A }
)  =  1 )
11811, 117syl 17 . . . . . 6  |-  ( ph  ->  ( # `  { A } )  =  1 )
119118oveq2d 6666 . . . . 5  |-  ( ph  ->  ( ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  +  ( # `  { A } ) )  =  ( ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  +  1 ) )
120116, 119breqtrd 4679 . . . 4  |-  ( ph  ->  ( # `  (
( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  u.  { A }
) )  <_  (
( # `  ( `' ( F quot  ( Xp  oF  -  ( CC  X.  { A } ) ) )
" { 0 } ) )  +  1 ) )
12173nn0red 11352 . . . . . 6  |-  ( ph  ->  D  e.  RR )
122 1red 10055 . . . . . 6  |-  ( ph  ->  1  e.  RR )
12397simprd 479 . . . . . . 7  |-  ( ph  ->  ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  <_ 
(deg `  ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) ) )
124123, 86breqtrd 4679 . . . . . 6  |-  ( ph  ->  ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  <_  D )
125109, 121, 122, 124leadd1dd 10641 . . . . 5  |-  ( ph  ->  ( ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  +  1 )  <_  ( D  +  1 ) )
126125, 78breqtrrd 4681 . . . 4  |-  ( ph  ->  ( ( # `  ( `' ( F quot  (
Xp  oF  -  ( CC  X.  { A } ) ) ) " { 0 } ) )  +  1 )  <_  (deg `  F ) )
127106, 111, 114, 120, 126letrd 10194 . . 3  |-  ( ph  ->  ( # `  (
( `' ( F quot  ( Xp  oF  -  ( CC 
X.  { A }
) ) ) " { 0 } )  u.  { A }
) )  <_  (deg `  F ) )
128103, 127eqbrtrd 4675 . 2  |-  ( ph  ->  ( # `  R
)  <_  (deg `  F
) )
129102, 128jca 554 1  |-  ( ph  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   NN0cn0 11292   #chash 13117   0pc0p 23436  Polycply 23940   Xpcidp 23941  degcdgr 23943   quot cquot 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  fta1  24063
  Copyright terms: Public domain W3C validator