| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 11723 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 11408 |
. . 3
⊢ (𝐴 ∈ ℂ → 1 ∈
ℤ) |
| 3 | | halfcn 11247 |
. . . . . . 7
⊢ (1 / 2)
∈ ℂ |
| 4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (1 / 2)
∈ ℂ) |
| 5 | | halfre 11246 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
| 6 | | 0re 10040 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 7 | | halfgt0 11248 |
. . . . . . . . . 10
⊢ 0 < (1
/ 2) |
| 8 | 6, 5, 7 | ltleii 10160 |
. . . . . . . . 9
⊢ 0 ≤ (1
/ 2) |
| 9 | | absid 14036 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 /
2)) |
| 10 | 5, 8, 9 | mp2an 708 |
. . . . . . . 8
⊢
(abs‘(1 / 2)) = (1 / 2) |
| 11 | | halflt1 11250 |
. . . . . . . 8
⊢ (1 / 2)
< 1 |
| 12 | 10, 11 | eqbrtri 4674 |
. . . . . . 7
⊢
(abs‘(1 / 2)) < 1 |
| 13 | 12 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(abs‘(1 / 2)) < 1) |
| 14 | 4, 13 | expcnv 14596 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘))
⇝ 0) |
| 15 | | id 22 |
. . . . 5
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) |
| 16 | | geo2lim.1 |
. . . . . . 7
⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) |
| 17 | | nnex 11026 |
. . . . . . . 8
⊢ ℕ
∈ V |
| 18 | 17 | mptex 6486 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ∈ V |
| 19 | 16, 18 | eqeltri 2697 |
. . . . . 6
⊢ 𝐹 ∈ V |
| 20 | 19 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ ℂ → 𝐹 ∈ V) |
| 21 | | nnnn0 11299 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) |
| 22 | 21 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ0) |
| 23 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑗)) |
| 24 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘)) =
(𝑘 ∈
ℕ0 ↦ ((1 / 2)↑𝑘)) |
| 25 | | ovex 6678 |
. . . . . . . . 9
⊢ ((1 /
2)↑𝑗) ∈
V |
| 26 | 23, 24, 25 | fvmpt 6282 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗)) |
| 27 | 22, 26 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗)) |
| 28 | | nnz 11399 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
| 29 | 28 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℤ) |
| 30 | | 2cn 11091 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
| 31 | | 2ne0 11113 |
. . . . . . . . 9
⊢ 2 ≠
0 |
| 32 | | exprec 12901 |
. . . . . . . . 9
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 𝑗 ∈ ℤ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗))) |
| 33 | 30, 31, 32 | mp3an12 1414 |
. . . . . . . 8
⊢ (𝑗 ∈ ℤ → ((1 /
2)↑𝑗) = (1 /
(2↑𝑗))) |
| 34 | 29, 33 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 /
2)↑𝑗) = (1 /
(2↑𝑗))) |
| 35 | 27, 34 | eqtrd 2656 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘))‘𝑗) = (1 / (2↑𝑗))) |
| 36 | | 2nn 11185 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
| 37 | | nnexpcl 12873 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑗
∈ ℕ0) → (2↑𝑗) ∈ ℕ) |
| 38 | 36, 22, 37 | sylancr 695 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
(2↑𝑗) ∈
ℕ) |
| 39 | 38 | nnrecred 11066 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 /
(2↑𝑗)) ∈
ℝ) |
| 40 | 39 | recnd 10068 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 /
(2↑𝑗)) ∈
ℂ) |
| 41 | 35, 40 | eqeltrd 2701 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0
↦ ((1 / 2)↑𝑘))‘𝑗) ∈ ℂ) |
| 42 | | simpl 473 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝐴 ∈
ℂ) |
| 43 | 38 | nncnd 11036 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
(2↑𝑗) ∈
ℂ) |
| 44 | 38 | nnne0d 11065 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
(2↑𝑗) ≠
0) |
| 45 | 42, 43, 44 | divrecd 10804 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) = (𝐴 · (1 / (2↑𝑗)))) |
| 46 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗)) |
| 47 | 46 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑗))) |
| 48 | | ovex 6678 |
. . . . . . . 8
⊢ (𝐴 / (2↑𝑗)) ∈ V |
| 49 | 47, 16, 48 | fvmpt 6282 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → (𝐹‘𝑗) = (𝐴 / (2↑𝑗))) |
| 50 | 49 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐴 / (2↑𝑗))) |
| 51 | 35 | oveq2d 6666 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 /
2)↑𝑘))‘𝑗)) = (𝐴 · (1 / (2↑𝑗)))) |
| 52 | 45, 50, 51 | 3eqtr4d 2666 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 /
2)↑𝑘))‘𝑗))) |
| 53 | 1, 2, 14, 15, 20, 41, 52 | climmulc2 14367 |
. . . 4
⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (𝐴 · 0)) |
| 54 | | mul01 10215 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴 · 0) =
0) |
| 55 | 53, 54 | breqtrd 4679 |
. . 3
⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ 0) |
| 56 | | seqex 12803 |
. . . 4
⊢ seq1( + ,
𝐹) ∈
V |
| 57 | 56 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℂ → seq1( + ,
𝐹) ∈
V) |
| 58 | 42, 43, 44 | divcld 10801 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) ∈ ℂ) |
| 59 | 50, 58 | eqeltrd 2701 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ ℂ) |
| 60 | 50 | oveq2d 6666 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 − (𝐹‘𝑗)) = (𝐴 − (𝐴 / (2↑𝑗)))) |
| 61 | | geo2sum 14604 |
. . . . 5
⊢ ((𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗)))) |
| 62 | 61 | ancoms 469 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗)))) |
| 63 | | elfznn 12370 |
. . . . . . 7
⊢ (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ) |
| 64 | 63 | adantl 482 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ) |
| 65 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛)) |
| 66 | 65 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑛))) |
| 67 | | ovex 6678 |
. . . . . . 7
⊢ (𝐴 / (2↑𝑛)) ∈ V |
| 68 | 66, 16, 67 | fvmpt 6282 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → (𝐹‘𝑛) = (𝐴 / (2↑𝑛))) |
| 69 | 64, 68 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹‘𝑛) = (𝐴 / (2↑𝑛))) |
| 70 | | simpr 477 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ) |
| 71 | 70, 1 | syl6eleq 2711 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
(ℤ≥‘1)) |
| 72 | | simpll 790 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝐴 ∈ ℂ) |
| 73 | | nnnn0 11299 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 74 | | nnexpcl 12873 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
| 75 | 36, 73, 74 | sylancr 695 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℕ) |
| 76 | 64, 75 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ∈ ℕ) |
| 77 | 76 | nncnd 11036 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ∈ ℂ) |
| 78 | 76 | nnne0d 11065 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2↑𝑛) ≠ 0) |
| 79 | 72, 77, 78 | divcld 10801 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐴 / (2↑𝑛)) ∈ ℂ) |
| 80 | 69, 71, 79 | fsumser 14461 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) →
Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (seq1( + , 𝐹)‘𝑗)) |
| 81 | 60, 62, 80 | 3eqtr2rd 2663 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (seq1( +
, 𝐹)‘𝑗) = (𝐴 − (𝐹‘𝑗))) |
| 82 | 1, 2, 55, 15, 57, 59, 81 | climsubc2 14369 |
. 2
⊢ (𝐴 ∈ ℂ → seq1( + ,
𝐹) ⇝ (𝐴 − 0)) |
| 83 | | subid1 10301 |
. 2
⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) |
| 84 | 82, 83 | breqtrd 4679 |
1
⊢ (𝐴 ∈ ℂ → seq1( + ,
𝐹) ⇝ 𝐴) |