MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2lim Structured version   Visualization version   Unicode version

Theorem geo2lim 14606
Description: The value of the infinite geometric series  2 ^ -u 1  +  2 ^ -u 2  +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1  |-  F  =  ( k  e.  NN  |->  ( A  /  (
2 ^ k ) ) )
Assertion
Ref Expression
geo2lim  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
Distinct variable group:    A, k
Allowed substitution hint:    F( k)

Proof of Theorem geo2lim
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . 3  |-  ( A  e.  CC  ->  1  e.  ZZ )
3 halfcn 11247 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
43a1i 11 . . . . . 6  |-  ( A  e.  CC  ->  (
1  /  2 )  e.  CC )
5 halfre 11246 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
6 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
7 halfgt0 11248 . . . . . . . . . 10  |-  0  <  ( 1  /  2
)
86, 5, 7ltleii 10160 . . . . . . . . 9  |-  0  <_  ( 1  /  2
)
9 absid 14036 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  0  <_  ( 1  / 
2 ) )  -> 
( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
105, 8, 9mp2an 708 . . . . . . . 8  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
11 halflt1 11250 . . . . . . . 8  |-  ( 1  /  2 )  <  1
1210, 11eqbrtri 4674 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  <  1
1312a1i 11 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( 1  / 
2 ) )  <  1 )
144, 13expcnv 14596 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) )  ~~>  0 )
15 id 22 . . . . 5  |-  ( A  e.  CC  ->  A  e.  CC )
16 geo2lim.1 . . . . . . 7  |-  F  =  ( k  e.  NN  |->  ( A  /  (
2 ^ k ) ) )
17 nnex 11026 . . . . . . . 8  |-  NN  e.  _V
1817mptex 6486 . . . . . . 7  |-  ( k  e.  NN  |->  ( A  /  ( 2 ^ k ) ) )  e.  _V
1916, 18eqeltri 2697 . . . . . 6  |-  F  e. 
_V
2019a1i 11 . . . . 5  |-  ( A  e.  CC  ->  F  e.  _V )
21 nnnn0 11299 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  NN0 )
2221adantl 482 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  NN0 )
23 oveq2 6658 . . . . . . . . 9  |-  ( k  =  j  ->  (
( 1  /  2
) ^ k )  =  ( ( 1  /  2 ) ^
j ) )
24 eqid 2622 . . . . . . . . 9  |-  ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) )  =  ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) )
25 ovex 6678 . . . . . . . . 9  |-  ( ( 1  /  2 ) ^ j )  e. 
_V
2623, 24, 25fvmpt 6282 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) ) `
 j )  =  ( ( 1  / 
2 ) ^ j
) )
2722, 26syl 17 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  =  ( ( 1  /  2
) ^ j ) )
28 nnz 11399 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  ZZ )
2928adantl 482 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  ZZ )
30 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
31 2ne0 11113 . . . . . . . . 9  |-  2  =/=  0
32 exprec 12901 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  2  =/=  0  /\  j  e.  ZZ )  ->  (
( 1  /  2
) ^ j )  =  ( 1  / 
( 2 ^ j
) ) )
3330, 31, 32mp3an12 1414 . . . . . . . 8  |-  ( j  e.  ZZ  ->  (
( 1  /  2
) ^ j )  =  ( 1  / 
( 2 ^ j
) ) )
3429, 33syl 17 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( 1  / 
2 ) ^ j
)  =  ( 1  /  ( 2 ^ j ) ) )
3527, 34eqtrd 2656 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  =  ( 1  /  ( 2 ^ j ) ) )
36 2nn 11185 . . . . . . . . 9  |-  2  e.  NN
37 nnexpcl 12873 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  j  e.  NN0 )  -> 
( 2 ^ j
)  e.  NN )
3836, 22, 37sylancr 695 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
)  e.  NN )
3938nnrecred 11066 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 1  /  (
2 ^ j ) )  e.  RR )
4039recnd 10068 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 1  /  (
2 ^ j ) )  e.  CC )
4135, 40eqeltrd 2701 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( ( k  e. 
NN0  |->  ( ( 1  /  2 ) ^
k ) ) `  j )  e.  CC )
42 simpl 473 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  A  e.  CC )
4338nncnd 11036 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
)  e.  CC )
4438nnne0d 11065 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( 2 ^ j
)  =/=  0 )
4542, 43, 44divrecd 10804 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  /  (
2 ^ j ) )  =  ( A  x.  ( 1  / 
( 2 ^ j
) ) ) )
46 oveq2 6658 . . . . . . . . 9  |-  ( k  =  j  ->  (
2 ^ k )  =  ( 2 ^ j ) )
4746oveq2d 6666 . . . . . . . 8  |-  ( k  =  j  ->  ( A  /  ( 2 ^ k ) )  =  ( A  /  (
2 ^ j ) ) )
48 ovex 6678 . . . . . . . 8  |-  ( A  /  ( 2 ^ j ) )  e. 
_V
4947, 16, 48fvmpt 6282 . . . . . . 7  |-  ( j  e.  NN  ->  ( F `  j )  =  ( A  / 
( 2 ^ j
) ) )
5049adantl 482 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  =  ( A  /  ( 2 ^ j ) ) )
5135oveq2d 6666 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  x.  (
( k  e.  NN0  |->  ( ( 1  / 
2 ) ^ k
) ) `  j
) )  =  ( A  x.  ( 1  /  ( 2 ^ j ) ) ) )
5245, 50, 513eqtr4d 2666 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  =  ( A  x.  ( ( k  e.  NN0  |->  ( ( 1  /  2 ) ^ k ) ) `
 j ) ) )
531, 2, 14, 15, 20, 41, 52climmulc2 14367 . . . 4  |-  ( A  e.  CC  ->  F  ~~>  ( A  x.  0
) )
54 mul01 10215 . . . 4  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
5553, 54breqtrd 4679 . . 3  |-  ( A  e.  CC  ->  F  ~~>  0 )
56 seqex 12803 . . . 4  |-  seq 1
(  +  ,  F
)  e.  _V
5756a1i 11 . . 3  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  e.  _V )
5842, 43, 44divcld 10801 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  /  (
2 ^ j ) )  e.  CC )
5950, 58eqeltrd 2701 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( F `  j
)  e.  CC )
6050oveq2d 6666 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  ( A  -  ( F `  j )
)  =  ( A  -  ( A  / 
( 2 ^ j
) ) ) )
61 geo2sum 14604 . . . . 5  |-  ( ( j  e.  NN  /\  A  e.  CC )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  ( A  -  ( A  /  (
2 ^ j ) ) ) )
6261ancoms 469 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  ( A  -  ( A  /  (
2 ^ j ) ) ) )
63 elfznn 12370 . . . . . . 7  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
6463adantl 482 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN )
65 oveq2 6658 . . . . . . . 8  |-  ( k  =  n  ->  (
2 ^ k )  =  ( 2 ^ n ) )
6665oveq2d 6666 . . . . . . 7  |-  ( k  =  n  ->  ( A  /  ( 2 ^ k ) )  =  ( A  /  (
2 ^ n ) ) )
67 ovex 6678 . . . . . . 7  |-  ( A  /  ( 2 ^ n ) )  e. 
_V
6866, 16, 67fvmpt 6282 . . . . . 6  |-  ( n  e.  NN  ->  ( F `  n )  =  ( A  / 
( 2 ^ n
) ) )
6964, 68syl 17 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( F `  n )  =  ( A  /  ( 2 ^ n ) ) )
70 simpr 477 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  NN )
7170, 1syl6eleq 2711 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
72 simpll 790 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  A  e.  CC )
73 nnnn0 11299 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN0 )
74 nnexpcl 12873 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
7536, 73, 74sylancr 695 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  NN )
7664, 75syl 17 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2 ^ n )  e.  NN )
7776nncnd 11036 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2 ^ n )  e.  CC )
7876nnne0d 11065 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2 ^ n )  =/=  0 )
7972, 77, 78divcld 10801 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( A  /  ( 2 ^ n ) )  e.  CC )
8069, 71, 79fsumser 14461 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN )  -> 
sum_ n  e.  (
1 ... j ) ( A  /  ( 2 ^ n ) )  =  (  seq 1
(  +  ,  F
) `  j )
)
8160, 62, 803eqtr2rd 2663 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN )  ->  (  seq 1 (  +  ,  F ) `
 j )  =  ( A  -  ( F `  j )
) )
821, 2, 55, 15, 57, 59, 81climsubc2 14369 . 2  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  ( A  -  0 ) )
83 subid1 10301 . 2  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )
8482, 83breqtrd 4679 1  |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  omssubadd  30362  sge0ad2en  40648
  Copyright terms: Public domain W3C validator