MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcnv Structured version   Visualization version   GIF version

Theorem expcnv 14596
Description: A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
expcnv.1 (𝜑𝐴 ∈ ℂ)
expcnv.2 (𝜑 → (abs‘𝐴) < 1)
Assertion
Ref Expression
expcnv (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . 3 ℕ = (ℤ‘1)
2 1zzd 11408 . . 3 ((𝜑𝐴 = 0) → 1 ∈ ℤ)
3 nn0ex 11298 . . . . 5 0 ∈ V
43mptex 6486 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
54a1i 11 . . 3 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
6 0cnd 10033 . . 3 ((𝜑𝐴 = 0) → 0 ∈ ℂ)
7 nnnn0 11299 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8 oveq2 6658 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
9 eqid 2622 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
10 ovex 6678 . . . . . . 7 (𝐴𝑘) ∈ V
118, 9, 10fvmpt 6282 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
127, 11syl 17 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
13 simpr 477 . . . . . 6 ((𝜑𝐴 = 0) → 𝐴 = 0)
1413oveq1d 6665 . . . . 5 ((𝜑𝐴 = 0) → (𝐴𝑘) = (0↑𝑘))
1512, 14sylan9eqr 2678 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (0↑𝑘))
16 0exp 12895 . . . . 5 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1716adantl 482 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (0↑𝑘) = 0)
1815, 17eqtrd 2656 . . 3 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = 0)
191, 2, 5, 6, 18climconst 14274 . 2 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
20 1zzd 11408 . . . 4 ((𝜑𝐴 ≠ 0) → 1 ∈ ℤ)
21 expcnv.2 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) < 1)
2221adantr 481 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) < 1)
23 expcnv.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
24 absrpcl 14028 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2523, 24sylan 488 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2625reclt1d 11885 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
2722, 26mpbid 222 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 1 < (1 / (abs‘𝐴)))
28 1re 10039 . . . . . . . . 9 1 ∈ ℝ
2925rpreccld 11882 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ+)
3029rpred 11872 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ)
31 difrp 11868 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3228, 30, 31sylancr 695 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3327, 32mpbid 222 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
3433rpreccld 11882 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
3534rpcnd 11874 . . . . 5 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
36 divcnv 14585 . . . . 5 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
3735, 36syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
38 nnex 11026 . . . . . 6 ℕ ∈ V
3938mptex 6486 . . . . 5 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
41 oveq2 6658 . . . . . . 7 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
42 eqid 2622 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
43 ovex 6678 . . . . . . 7 ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ V
4441, 42, 43fvmpt 6282 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4544adantl 482 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4634rpred 11872 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
47 nndivre 11056 . . . . . 6 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4846, 47sylan 488 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4945, 48eqeltrd 2701 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
50 oveq2 6658 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
51 eqid 2622 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
52 ovex 6678 . . . . . . . 8 ((abs‘𝐴)↑𝑘) ∈ V
5350, 51, 52fvmpt 6282 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
5453adantl 482 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
55 nnz 11399 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
56 rpexpcl 12879 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5725, 55, 56syl2an 494 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5854, 57eqeltrd 2701 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
5958rpred 11872 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
60 nnrp 11842 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
61 rpmulcl 11855 . . . . . . . 8 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6233, 60, 61syl2an 494 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6362rpred 11872 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
64 peano2re 10209 . . . . . . . . . 10 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
6563, 64syl 17 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
66 rpexpcl 12879 . . . . . . . . . . 11 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6729, 55, 66syl2an 494 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6867rpred 11872 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
6963lep1d 10955 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
7030adantr 481 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
717adantl 482 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
7229rpge0d 11876 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → 0 ≤ (1 / (abs‘𝐴)))
7372adantr 481 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
74 bernneq2 12991 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7570, 71, 73, 74syl3anc 1326 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7663, 65, 68, 69, 75letrd 10194 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
7725rpcnne0d 11881 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0))
78 exprec 12901 . . . . . . . . . 10 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
79783expa 1265 . . . . . . . . 9 ((((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8077, 55, 79syl2an 494 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8176, 80breqtrd 4679 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
8262, 57, 81lerec2d 11893 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8333rpcnne0d 11881 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0))
84 nncn 11028 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
85 nnne0 11053 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8684, 85jca 554 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
87 recdiv2 10738 . . . . . . 7 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8883, 86, 87syl2an 494 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8982, 88breqtrrd 4681 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
9089, 54, 453brtr4d 4685 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
9158rpge0d 11876 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
921, 20, 37, 40, 49, 59, 90, 91climsqz2 14372 . . 3 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
93 1zzd 11408 . . . . 5 (𝜑 → 1 ∈ ℤ)
944a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
9539a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
967adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
9796, 11syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
98 expcl 12878 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
9923, 7, 98syl2an 494 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
10097, 99eqeltrd 2701 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
101 absexp 14044 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10223, 7, 101syl2an 494 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10397fveq2d 6195 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
10453adantl 482 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
105102, 103, 1043eqtr4rd 2667 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
1061, 93, 94, 95, 100, 105climabs0 14316 . . . 4 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
107106biimpar 502 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10892, 107syldan 487 . 2 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10919, 108pm2.61dane 2881 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  +crp 11832  cexp 12860  abscabs 13974  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by:  explecnv  14597  geolim  14601  geo2lim  14606  iscmet3lem3  23088  mbfi1fseqlem6  23487  geomcau  33555  stoweidlem7  40224
  Copyright terms: Public domain W3C validator