MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexexlem Structured version   Visualization version   Unicode version

Theorem gexexlem 18255
Description: Lemma for gexex 18256. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1  |-  X  =  ( Base `  G
)
gexex.2  |-  E  =  (gEx `  G )
gexex.3  |-  O  =  ( od `  G
)
gexexlem.1  |-  ( ph  ->  G  e.  Abel )
gexexlem.2  |-  ( ph  ->  E  e.  NN )
gexexlem.3  |-  ( ph  ->  A  e.  X )
gexexlem.4  |-  ( (
ph  /\  y  e.  X )  ->  ( O `  y )  <_  ( O `  A
) )
Assertion
Ref Expression
gexexlem  |-  ( ph  ->  ( O `  A
)  =  E )
Distinct variable groups:    y, A    y, E    y, G    y, O    ph, y    y, X

Proof of Theorem gexexlem
Dummy variables  x  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexexlem.3 . . 3  |-  ( ph  ->  A  e.  X )
2 gexex.1 . . . 4  |-  X  =  ( Base `  G
)
3 gexex.3 . . . 4  |-  O  =  ( od `  G
)
42, 3odcl 17955 . . 3  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
51, 4syl 17 . 2  |-  ( ph  ->  ( O `  A
)  e.  NN0 )
6 gexexlem.2 . . 3  |-  ( ph  ->  E  e.  NN )
76nnnn0d 11351 . 2  |-  ( ph  ->  E  e.  NN0 )
8 gexexlem.1 . . . 4  |-  ( ph  ->  G  e.  Abel )
9 ablgrp 18198 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
108, 9syl 17 . . 3  |-  ( ph  ->  G  e.  Grp )
11 gexex.2 . . . 4  |-  E  =  (gEx `  G )
122, 11, 3gexod 18001 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  ||  E )
1310, 1, 12syl2anc 693 . 2  |-  ( ph  ->  ( O `  A
)  ||  E )
148ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  G  e.  Abel )
1510ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  G  e.  Grp )
16 prmnn 15388 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  p  e.  NN )
1716adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  NN )
18 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  Prime )
196ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  E  e.  NN )
201ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  A  e.  X )
212, 11, 3gexnnod 18003 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  E  e.  NN  /\  A  e.  X )  ->  ( O `  A )  e.  NN )
2215, 19, 20, 21syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  A )  e.  NN )
2318, 22pccld 15555 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  A ) )  e. 
NN0 )
2417, 23nnexpcld 13030 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  NN )
2524nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  ZZ )
26 eqid 2622 . . . . . . . . . . . . . 14  |-  (.g `  G
)  =  (.g `  G
)
272, 26mulgcl 17559 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( p ^ (
p  pCnt  ( O `  A ) ) )  e.  ZZ  /\  A  e.  X )  ->  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A )  e.  X )
2815, 25, 20, 27syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A )  e.  X )
29 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  x  e.  X )
302, 11, 3gexnnod 18003 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  E  e.  NN  /\  x  e.  X )  ->  ( O `  x )  e.  NN )
3115, 19, 29, 30syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  x )  e.  NN )
32 pcdvds 15568 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( O `  x )  e.  NN )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) ) 
||  ( O `  x ) )
3318, 31, 32syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) ) 
||  ( O `  x ) )
3418, 31pccld 15555 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  x ) )  e. 
NN0 )
3517, 34nnexpcld 13030 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  NN )
36 nndivdvds 14989 . . . . . . . . . . . . . . . 16  |-  ( ( ( O `  x
)  e.  NN  /\  ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  NN )  -> 
( ( p ^
( p  pCnt  ( O `  x )
) )  ||  ( O `  x )  <->  ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  e.  NN ) )
3731, 35, 36syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) ) 
||  ( O `  x )  <->  ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) )  e.  NN ) )
3833, 37mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  e.  NN )
3938nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  e.  ZZ )
402, 26mulgcl 17559 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  e.  ZZ  /\  x  e.  X )  ->  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )
4115, 39, 29, 40syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )
422, 3, 26odmulg 17973 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( p ^ (
p  pCnt  ( O `  A ) ) )  e.  ZZ )  -> 
( O `  A
)  =  ( ( ( p ^ (
p  pCnt  ( O `  A ) ) )  gcd  ( O `  A ) )  x.  ( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) ) )
4315, 20, 25, 42syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  A )  =  ( ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  gcd  ( O `  A ) )  x.  ( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) ) )
44 pcdvds 15568 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  ( O `  A )  e.  NN )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) ) 
||  ( O `  A ) )
4518, 22, 44syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) ) 
||  ( O `  A ) )
46 gcdeq 15272 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p ^ (
p  pCnt  ( O `  A ) ) )  e.  NN  /\  ( O `  A )  e.  NN )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) )  gcd  ( O `  A )
)  =  ( p ^ ( p  pCnt  ( O `  A ) ) )  <->  ( p ^ ( p  pCnt  ( O `  A ) ) )  ||  ( O `  A )
) )
4724, 22, 46syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) )  gcd  ( O `  A )
)  =  ( p ^ ( p  pCnt  ( O `  A ) ) )  <->  ( p ^ ( p  pCnt  ( O `  A ) ) )  ||  ( O `  A )
) )
4845, 47mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  A ) ) )  gcd  ( O `  A ) )  =  ( p ^ (
p  pCnt  ( O `  A ) ) ) )
4948oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) )  gcd  ( O `  A )
)  x.  ( O `
 ( ( p ^ ( p  pCnt  ( O `  A ) ) ) (.g `  G
) A ) ) )  =  ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  x.  ( O `  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) ) ) )
5043, 49eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  A )  =  ( ( p ^ ( p  pCnt  ( O `  A ) ) )  x.  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) ) )
5150oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  =  ( ( ( p ^ ( p  pCnt  ( O `  A ) ) )  x.  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )
522, 11, 3gexnnod 18003 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  E  e.  NN  /\  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A )  e.  X )  ->  ( O `  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) )  e.  NN )
5315, 19, 28, 52syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  e.  NN )
5453nncnd 11036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  e.  CC )
5524nncnd 11036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  CC )
5624nnne0d 11065 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  =/=  0 )
5754, 55, 56divcan3d 10806 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) )  x.  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) )  =  ( O `
 ( ( p ^ ( p  pCnt  ( O `  A ) ) ) (.g `  G
) A ) ) )
5851, 57eqtr2d 2657 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  =  ( ( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) )
592, 11, 3gexnnod 18003 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  E  e.  NN  /\  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )  ->  ( O `  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  NN )
6015, 19, 41, 59syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  NN )
6160nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  CC )
6235nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  CC )
6338nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  e.  CC )
6438nnne0d 11065 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  =/=  0 )
6531nncnd 11036 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  x )  e.  CC )
6635nnne0d 11065 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  =/=  0 )
6765, 62, 66divcan1d 10802 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  =  ( O `  x
) )
682, 3, 26odmulg 17973 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  e.  ZZ )  ->  ( O `  x )  =  ( ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  gcd  ( O `
 x ) )  x.  ( O `  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) ) )
6915, 29, 39, 68syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  x )  =  ( ( ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  gcd  ( O `  x
) )  x.  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) ) )
7035nnzd 11481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  ZZ )
71 dvdsmul1 15003 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  e.  ZZ  /\  ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  ZZ )  -> 
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  ||  ( ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  x.  ( p ^ (
p  pCnt  ( O `  x ) ) ) ) )
7239, 70, 71syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  ||  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
7372, 67breqtrd 4679 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  ||  ( O `  x ) )
74 gcdeq 15272 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  e.  NN  /\  ( O `  x )  e.  NN )  -> 
( ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) )  gcd  ( O `  x
) )  =  ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  <->  ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) )  ||  ( O `  x ) ) )
7538, 31, 74syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  gcd  ( O `
 x ) )  =  ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  <->  ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  ||  ( O `
 x ) ) )
7673, 75mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  gcd  ( O `
 x ) )  =  ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) )
7776oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  gcd  ( O `
 x ) )  x.  ( O `  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  x.  ( O `
 ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) ) )
7867, 69, 773eqtrrd 2661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  x.  ( O `
 ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
7961, 62, 63, 64, 78mulcanad 10662 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  =  ( p ^ ( p  pCnt  ( O `  x ) ) ) )
8058, 79oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  gcd  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  gcd  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
81 nndivdvds 14989 . . . . . . . . . . . . . . . . 17  |-  ( ( ( O `  A
)  e.  NN  /\  ( p ^ (
p  pCnt  ( O `  A ) ) )  e.  NN )  -> 
( ( p ^
( p  pCnt  ( O `  A )
) )  ||  ( O `  A )  <->  ( ( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  NN ) )
8222, 24, 81syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  A ) ) ) 
||  ( O `  A )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  e.  NN ) )
8345, 82mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  NN )
8483nnzd 11481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  ZZ )
85 gcdcom 15235 . . . . . . . . . . . . . 14  |-  ( ( ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  e.  ZZ  /\  ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  ZZ )  -> 
( ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) )  gcd  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  =  ( ( p ^
( p  pCnt  ( O `  x )
) )  gcd  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) ) )
8684, 70, 85syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  gcd  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  =  ( ( p ^
( p  pCnt  ( O `  x )
) )  gcd  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) ) )
87 pcndvds2 15572 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( O `  A )  e.  NN )  ->  -.  p  ||  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )
8818, 22, 87syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  -.  p  ||  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )
89 coprm 15423 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  ZZ )  ->  ( -.  p  ||  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <->  ( p  gcd  ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) ) )  =  1 ) )
9018, 84, 89syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( -.  p  ||  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <->  ( p  gcd  ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) ) )  =  1 ) )
9188, 90mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  gcd  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) ) )  =  1 )
92 prmz 15389 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  p  e.  ZZ )
9392adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  ZZ )
94 rpexp1i 15433 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  ZZ  /\  ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  e.  ZZ  /\  ( p  pCnt  ( O `
 x ) )  e.  NN0 )  -> 
( ( p  gcd  ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) ) )  =  1  ->  ( ( p ^ ( p  pCnt  ( O `  x ) ) )  gcd  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) )  =  1 ) )
9593, 84, 34, 94syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p  gcd  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) )  =  1  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  gcd  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )  =  1 ) )
9691, 95mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  gcd  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )  =  1 )
9780, 86, 963eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  gcd  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  1 )
98 eqid 2622 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
993, 2, 98odadd 18253 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A )  e.  X  /\  ( ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )  /\  ( ( O `  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) )  gcd  ( O `  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  1 )  ->  ( O `  ( (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  =  ( ( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  x.  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) ) )
10014, 28, 41, 97, 99syl31anc 1329 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  =  ( ( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  x.  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) ) )
10158, 79oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  x.  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
102100, 101eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
1032, 98grpcl 17430 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A )  e.  X  /\  ( ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )  -> 
( ( ( p ^ ( p  pCnt  ( O `  A ) ) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  X
)
10415, 28, 41, 103syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  X
)
105 gexexlem.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  X )  ->  ( O `  y )  <_  ( O `  A
) )
106105ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  X  ( O `  y )  <_  ( O `  A ) )
107106ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  A. y  e.  X  ( O `  y )  <_  ( O `  A )
)
108 fveq2 6191 . . . . . . . . . . . . 13  |-  ( y  =  ( ( ( p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) )  ->  ( O `  y )  =  ( O `  ( ( ( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) ) )
109108breq1d 4663 . . . . . . . . . . . 12  |-  ( y  =  ( ( ( p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) )  ->  ( ( O `  y )  <_  ( O `  A
)  <->  ( O `  ( ( ( p ^ ( p  pCnt  ( O `  A ) ) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  <_ 
( O `  A
) ) )
110109rspcv 3305 . . . . . . . . . . 11  |-  ( ( ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  X  ->  ( A. y  e.  X  ( O `  y )  <_  ( O `  A )  ->  ( O `  (
( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  <_ 
( O `  A
) ) )
111104, 107, 110sylc 65 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  <_  ( O `  A )
)
112102, 111eqbrtrrd 4677 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  <_ 
( O `  A
) )
11383nnred 11035 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  RR )
11422nnred 11035 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  A )  e.  RR )
11535nnrpd 11870 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  RR+ )
116113, 114, 115lemuldivd 11921 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  <_ 
( O `  A
)  <->  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) )  <_  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) ) )
117112, 116mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) )
118 nnrp 11842 . . . . . . . . . 10  |-  ( ( p ^ ( p 
pCnt  ( O `  x ) ) )  e.  NN  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  RR+ )
119 nnrp 11842 . . . . . . . . . 10  |-  ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  e.  NN  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  RR+ )
120 nnrp 11842 . . . . . . . . . 10  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  RR+ )
121 rpregt0 11846 . . . . . . . . . . 11  |-  ( ( p ^ ( p 
pCnt  ( O `  x ) ) )  e.  RR+  ->  ( ( p ^ ( p 
pCnt  ( O `  x ) ) )  e.  RR  /\  0  <  ( p ^ (
p  pCnt  ( O `  x ) ) ) ) )
122 rpregt0 11846 . . . . . . . . . . 11  |-  ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  e.  RR+  ->  ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  e.  RR  /\  0  <  ( p ^ (
p  pCnt  ( O `  A ) ) ) ) )
123 rpregt0 11846 . . . . . . . . . . 11  |-  ( ( O `  A )  e.  RR+  ->  ( ( O `  A )  e.  RR  /\  0  <  ( O `  A
) ) )
124 lediv2 10913 . . . . . . . . . . 11  |-  ( ( ( ( p ^
( p  pCnt  ( O `  x )
) )  e.  RR  /\  0  <  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  /\  ( ( p ^
( p  pCnt  ( O `  A )
) )  e.  RR  /\  0  <  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  /\  ( ( O `  A )  e.  RR  /\  0  <  ( O `
 A ) ) )  ->  ( (
p ^ ( p 
pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) ) )
125121, 122, 123, 124syl3an 1368 . . . . . . . . . 10  |-  ( ( ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  RR+  /\  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  RR+  /\  ( O `  A )  e.  RR+ )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) ) )
126118, 119, 120, 125syl3an 1368 . . . . . . . . 9  |-  ( ( ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  NN  /\  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  NN  /\  ( O `  A )  e.  NN )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) ) )
12735, 24, 22, 126syl3anc 1326 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) ) )
128117, 127mpbird 247 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) ) )
12917nnred 11035 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  RR )
13034nn0zd 11480 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  x ) )  e.  ZZ )
13123nn0zd 11480 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  A ) )  e.  ZZ )
132 prmuz2 15408 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
133132adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  ( ZZ>= `  2 )
)
134 eluz2b2 11761 . . . . . . . . . 10  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
135134simprbi 480 . . . . . . . . 9  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
136133, 135syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  1  <  p )
137129, 130, 131, 136leexp2d 13039 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p  pCnt  ( O `  x )
)  <_  ( p  pCnt  ( O `  A
) )  <->  ( p ^ ( p  pCnt  ( O `  x ) ) )  <_  (
p ^ ( p 
pCnt  ( O `  A ) ) ) ) )
138128, 137mpbird 247 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  x ) )  <_ 
( p  pCnt  ( O `  A )
) )
139138ralrimiva 2966 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A. p  e.  Prime  ( p  pCnt  ( O `  x ) )  <_  ( p  pCnt  ( O `  A
) ) )
1402, 3odcl 17955 . . . . . . . 8  |-  ( x  e.  X  ->  ( O `  x )  e.  NN0 )
141140adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( O `  x )  e.  NN0 )
142141nn0zd 11480 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( O `  x )  e.  ZZ )
1435nn0zd 11480 . . . . . . 7  |-  ( ph  ->  ( O `  A
)  e.  ZZ )
144143adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( O `  A )  e.  ZZ )
145 pc2dvds 15583 . . . . . 6  |-  ( ( ( O `  x
)  e.  ZZ  /\  ( O `  A )  e.  ZZ )  -> 
( ( O `  x )  ||  ( O `  A )  <->  A. p  e.  Prime  (
p  pCnt  ( O `  x ) )  <_ 
( p  pCnt  ( O `  A )
) ) )
146142, 144, 145syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( O `  x
)  ||  ( O `  A )  <->  A. p  e.  Prime  ( p  pCnt  ( O `  x ) )  <_  ( p  pCnt  ( O `  A
) ) ) )
147139, 146mpbird 247 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( O `  x )  ||  ( O `  A
) )
148147ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  X  ( O `  x ) 
||  ( O `  A ) )
1492, 11, 3gexdvds2 18000 . . . 4  |-  ( ( G  e.  Grp  /\  ( O `  A )  e.  ZZ )  -> 
( E  ||  ( O `  A )  <->  A. x  e.  X  ( O `  x ) 
||  ( O `  A ) ) )
15010, 143, 149syl2anc 693 . . 3  |-  ( ph  ->  ( E  ||  ( O `  A )  <->  A. x  e.  X  ( O `  x ) 
||  ( O `  A ) ) )
151148, 150mpbird 247 . 2  |-  ( ph  ->  E  ||  ( O `
 A ) )
152 dvdseq 15036 . 2  |-  ( ( ( ( O `  A )  e.  NN0  /\  E  e.  NN0 )  /\  ( ( O `  A )  ||  E  /\  E  ||  ( O `
 A ) ) )  ->  ( O `  A )  =  E )
1535, 7, 13, 151, 152syl22anc 1327 1  |-  ( ph  ->  ( O `  A
)  =  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ^cexp 12860    || cdvds 14983    gcd cgcd 15216   Primecprime 15385    pCnt cpc 15541   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422  .gcmg 17540   odcod 17944  gExcgex 17945   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-od 17948  df-gex 17949  df-cmn 18195  df-abl 18196
This theorem is referenced by:  gexex  18256
  Copyright terms: Public domain W3C validator