| Step | Hyp | Ref
| Expression |
| 1 | | iblsplit.3 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
| 2 | | eqid 2622 |
. . . 4
⊢ (𝑥 ∈ 𝑈 ↦ 𝐶) = (𝑥 ∈ 𝑈 ↦ 𝐶) |
| 3 | 1, 2 | fmptd 6385 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶):𝑈⟶ℂ) |
| 4 | | ssun1 3776 |
. . . . . 6
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| 5 | | iblsplit.2 |
. . . . . 6
⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
| 6 | 4, 5 | syl5sseqr 3654 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
| 7 | 6 | resmptd 5452 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 8 | | iblsplit.4 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 9 | | eqidd 2623 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) |
| 10 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦)))) |
| 11 | 6 | sseld 3602 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑈)) |
| 12 | 11 | imdistani 726 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜑 ∧ 𝑥 ∈ 𝑈)) |
| 13 | 12, 1 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 14 | 9, 10, 13 | isibl2 23533 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑦 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))) |
| 15 | 8, 14 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑦 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)) |
| 16 | 15 | simpld 475 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 17 | 7, 16 | eqeltrd 2701 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ↾ 𝐴) ∈ MblFn) |
| 18 | | ssun2 3777 |
. . . . . 6
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
| 19 | 18, 5 | syl5sseqr 3654 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
| 20 | 19 | resmptd 5452 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 21 | | iblsplit.5 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈
𝐿1) |
| 22 | | eqidd 2623 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) |
| 23 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦)))) |
| 24 | 19 | sseld 3602 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 25 | 24 | imdistani 726 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜑 ∧ 𝑥 ∈ 𝑈)) |
| 26 | 25, 1 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 27 | 22, 23, 26 | isibl2 23533 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ ∀𝑦 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))) |
| 28 | 21, 27 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ ∀𝑦 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)) |
| 29 | 28 | simpld 475 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
| 30 | 20, 29 | eqeltrd 2701 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ↾ 𝐵) ∈ MblFn) |
| 31 | 5 | eqcomd 2628 |
. . 3
⊢ (𝜑 → (𝐴 ∪ 𝐵) = 𝑈) |
| 32 | 3, 17, 30, 31 | mbfres2cn 40174 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ MblFn) |
| 33 | 16, 13 | mbfdm2 23405 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 34 | 33 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol) |
| 35 | 29, 26 | mbfdm2 23405 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ dom vol) |
| 36 | 35 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝐵 ∈ dom vol) |
| 37 | | iblsplit.1 |
. . . . . 6
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
| 38 | 37 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
| 39 | 5 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑈 = (𝐴 ∪ 𝐵)) |
| 40 | 1 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
| 41 | | ax-icn 9995 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
| 42 | 41 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...3) → i ∈
ℂ) |
| 43 | | elfznn0 12433 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℕ0) |
| 44 | 42, 43 | expcld 13008 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...3) →
(i↑𝑘) ∈
ℂ) |
| 45 | 44 | ad2antlr 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (i↑𝑘) ∈ ℂ) |
| 46 | 41 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → i ∈ ℂ) |
| 47 | | ine0 10465 |
. . . . . . . . . . . . 13
⊢ i ≠
0 |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → i ≠ 0) |
| 49 | | elfzelz 12342 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
| 50 | 49 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → 𝑘 ∈ ℤ) |
| 51 | 46, 48, 50 | expne0d 13014 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (i↑𝑘) ≠ 0) |
| 52 | 40, 45, 51 | divcld 10801 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (𝐶 / (i↑𝑘)) ∈ ℂ) |
| 53 | 52 | recld 13934 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) |
| 54 | 53 | rexrd 10089 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈
ℝ*) |
| 55 | 54 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈
ℝ*) |
| 56 | | simpr 477 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) |
| 57 | | pnfge 11964 |
. . . . . . . 8
⊢
((ℜ‘(𝐶 /
(i↑𝑘))) ∈
ℝ* → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞) |
| 58 | 55, 57 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞) |
| 59 | | 0xr 10086 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 60 | | pnfxr 10092 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
| 61 | | elicc1 12219 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ*) →
((ℜ‘(𝐶 /
(i↑𝑘))) ∈
(0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))) ∧
(ℜ‘(𝐶 /
(i↑𝑘))) ≤
+∞))) |
| 62 | 59, 60, 61 | mp2an 708 |
. . . . . . 7
⊢
((ℜ‘(𝐶 /
(i↑𝑘))) ∈
(0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))) ∧
(ℜ‘(𝐶 /
(i↑𝑘))) ≤
+∞)) |
| 63 | 55, 56, 58, 62 | syl3anbrc 1246 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞)) |
| 64 | | 0e0iccpnf 12283 |
. . . . . . 7
⊢ 0 ∈
(0[,]+∞) |
| 65 | 64 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ ¬ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ∈
(0[,]+∞)) |
| 66 | 63, 65 | ifclda 4120 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 67 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 68 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 69 | | ifan 4134 |
. . . . . 6
⊢ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 70 | 69 | mpteq2i 4741 |
. . . . 5
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 71 | | ifan 4134 |
. . . . . . . . . 10
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 72 | 71 | eqcomi 2631 |
. . . . . . . . 9
⊢ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) |
| 73 | 72 | mpteq2i 4741 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 74 | 73 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 75 | 74 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) |
| 76 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 77 | | eqidd 2623 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 78 | 76, 77, 13 | isibl2 23533 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 79 | 8, 78 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)) |
| 80 | 79 | simprd 479 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 81 | 80 | r19.21bi 2932 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 82 | 75, 81 | eqeltrd 2701 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0), 0)))
∈ ℝ) |
| 83 | | ifan 4134 |
. . . . . . . . 9
⊢ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 84 | 83 | eqcomi 2631 |
. . . . . . . 8
⊢ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) |
| 85 | 84 | mpteq2i 4741 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 86 | 85 | fveq2i 6194 |
. . . . . 6
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 87 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 88 | | eqidd 2623 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 89 | 87, 88, 26 | isibl2 23533 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 90 | 21, 89 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)) |
| 91 | 90 | simprd 479 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 92 | 91 | r19.21bi 2932 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 93 | 86, 92 | syl5eqel 2705 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0), 0)))
∈ ℝ) |
| 94 | 34, 36, 38, 39, 66, 67, 68, 70, 82, 93 | itg2split 23516 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) +
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0),
0))))) |
| 95 | 82, 93 | readdcld 10069 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) +
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0), 0))))
∈ ℝ) |
| 96 | 94, 95 | eqeltrd 2701 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 97 | 96 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 98 | | eqidd 2623 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 99 | | eqidd 2623 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 100 | 98, 99, 1 | isibl2 23533 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝑈 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 101 | 32, 97, 100 | mpbir2and 957 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈
𝐿1) |