MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm5 Structured version   Visualization version   Unicode version

Theorem isprm5 15419
Description: One need only check prime divisors of  P up to  sqr P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isprm4 15397 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  (
ZZ>= `  2 ) ( z  ||  P  -> 
z  =  P ) ) )
2 prmuz2 15408 . . . . . . . 8  |-  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
)
32a1i 11 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
) )
4 eluz2b2 11761 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
54simprbi 480 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
6 eluzelre 11698 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
7 eluz2nn 11726 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
87nngt0d 11064 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  0  <  P )
9 ltmulgt11 10883 . . . . . . . . . . . . 13  |-  ( ( P  e.  RR  /\  P  e.  RR  /\  0  <  P )  ->  (
1  <  P  <->  P  <  ( P  x.  P ) ) )
106, 6, 8, 9syl3anc 1326 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( 1  <  P  <->  P  <  ( P  x.  P ) ) )
115, 10mpbid 222 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  <  ( P  x.  P ) )
126, 6remulcld 10070 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  x.  P )  e.  RR )
136, 12ltnled 10184 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  <  ( P  x.  P
)  <->  -.  ( P  x.  P )  <_  P
) )
1411, 13mpbid 222 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  ->  -.  ( P  x.  P )  <_  P )
15 oveq12 6659 . . . . . . . . . . . . 13  |-  ( ( z  =  P  /\  z  =  P )  ->  ( z  x.  z
)  =  ( P  x.  P ) )
1615anidms 677 . . . . . . . . . . . 12  |-  ( z  =  P  ->  (
z  x.  z )  =  ( P  x.  P ) )
1716breq1d 4663 . . . . . . . . . . 11  |-  ( z  =  P  ->  (
( z  x.  z
)  <_  P  <->  ( P  x.  P )  <_  P
) )
1817notbid 308 . . . . . . . . . 10  |-  ( z  =  P  ->  ( -.  ( z  x.  z
)  <_  P  <->  -.  ( P  x.  P )  <_  P ) )
1914, 18syl5ibrcom 237 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( z  =  P  ->  -.  (
z  x.  z )  <_  P ) )
2019imim2d 57 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  z  =  P )  -> 
( z  ||  P  ->  -.  ( z  x.  z )  <_  P
) ) )
21 con2 130 . . . . . . . 8  |-  ( ( z  ||  P  ->  -.  ( z  x.  z
)  <_  P )  ->  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) )
2220, 21syl6 35 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  z  =  P )  -> 
( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
233, 22imim12d 81 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  ->  ( z  e. 
Prime  ->  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) ) ) )
2423ralimdv2 2961 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  ->  A. z  e.  Prime  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) ) )
25 annim 441 . . . . . . . . 9  |-  ( ( z  ||  P  /\  -.  z  =  P
)  <->  -.  ( z  ||  P  ->  z  =  P ) )
26 oveq12 6659 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  z  /\  x  =  z )  ->  ( x  x.  x
)  =  ( z  x.  z ) )
2726anidms 677 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
x  x.  x )  =  ( z  x.  z ) )
2827breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( x  x.  x
)  <_  P  <->  ( z  x.  z )  <_  P
) )
29 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  ||  P  <->  z  ||  P ) )
3028, 29anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( ( x  x.  x )  <_  P  /\  x  ||  P )  <-> 
( ( z  x.  z )  <_  P  /\  z  ||  P ) ) )
3130rspcev 3309 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  (
( z  x.  z
)  <_  P  /\  z  ||  P ) )  ->  E. x  e.  (
ZZ>= `  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) )
3231ancom2s 844 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  (
z  ||  P  /\  ( z  x.  z
)  <_  P )
)  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) )
3332expr 643 . . . . . . . . . . . 12  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  x.  z
)  <_  P  ->  E. x  e.  ( ZZ>= ` 
2 ) ( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
3433ad2ant2lr 784 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( z  x.  z
)  <_  P  ->  E. x  e.  ( ZZ>= ` 
2 ) ( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
35 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  ||  P )
36 eluzelz 11697 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
3736ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  ZZ )
38 eluz2nn 11726 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN )
3938ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  NN )
4039nnne0d 11065 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  =/=  0 )
41 eluzelz 11697 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
4241ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  ZZ )
43 dvdsval2 14986 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  z  =/=  0  /\  P  e.  ZZ )  ->  (
z  ||  P  <->  ( P  /  z )  e.  ZZ ) )
4437, 40, 42, 43syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  ||  P  <->  ( P  /  z )  e.  ZZ ) )
4535, 44mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  z )  e.  ZZ )
46 eluzelre 11698 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  RR )
4746ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  RR )
4847recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  CC )
4948mulid2d 10058 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
1  x.  z )  =  z )
507ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  NN )
51 dvdsle 15032 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
5251imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  ZZ  /\  P  e.  NN )  /\  z  ||  P
)  ->  z  <_  P )
5337, 50, 35, 52syl21anc 1325 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  <_  P )
54 simprr 796 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  -.  z  =  P )
5554neqned 2801 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  =/=  P )
5655necomd 2849 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  =/=  z )
576ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  RR )
5847, 57ltlend 10182 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  <  P  <->  ( z  <_  P  /\  P  =/=  z ) ) )
5953, 56, 58mpbir2and 957 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  <  P )
6049, 59eqbrtrd 4675 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
1  x.  z )  <  P )
61 1red 10055 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  1  e.  RR )
6242zred 11482 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  RR )
63 nnre 11027 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  NN  ->  z  e.  RR )
64 nngt0 11049 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  NN  ->  0  <  z )
6563, 64jca 554 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  ->  (
z  e.  RR  /\  0  <  z ) )
6639, 65syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  e.  RR  /\  0  <  z ) )
67 ltmuldiv 10896 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  P  e.  RR  /\  (
z  e.  RR  /\  0  <  z ) )  ->  ( ( 1  x.  z )  < 
P  <->  1  <  ( P  /  z ) ) )
6861, 62, 66, 67syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( 1  x.  z
)  <  P  <->  1  <  ( P  /  z ) ) )
6960, 68mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  1  <  ( P  /  z
) )
70 eluz2b1 11759 . . . . . . . . . . . . 13  |-  ( ( P  /  z )  e.  ( ZZ>= `  2
)  <->  ( ( P  /  z )  e.  ZZ  /\  1  < 
( P  /  z
) ) )
7145, 69, 70sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  z )  e.  ( ZZ>= `  2 )
)
7247, 47remulcld 10070 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  e.  RR )
7339, 39nnmulcld 11068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  e.  NN )
74 nnrp 11842 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  NN  ->  P  e.  RR+ )
75 nnrp 11842 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  x.  z )  e.  NN  ->  (
z  x.  z )  e.  RR+ )
76 rpdivcl 11856 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  RR+  /\  (
z  x.  z )  e.  RR+ )  ->  ( P  /  ( z  x.  z ) )  e.  RR+ )
7774, 75, 76syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  NN  /\  ( z  x.  z
)  e.  NN )  ->  ( P  / 
( z  x.  z
) )  e.  RR+ )
7850, 73, 77syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  ( z  x.  z ) )  e.  RR+ )
7957, 72, 78lemul1d 11915 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  <->  ( P  x.  ( P  /  (
z  x.  z ) ) )  <_  (
( z  x.  z
)  x.  ( P  /  ( z  x.  z ) ) ) ) )
8057recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  CC )
8180, 48, 80, 48, 40, 40divmuldivd 10842 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( P  /  z
)  x.  ( P  /  z ) )  =  ( ( P  x.  P )  / 
( z  x.  z
) ) )
8273nncnd 11036 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  e.  CC )
8373nnne0d 11065 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  =/=  0 )
8480, 80, 82, 83divassd 10836 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( P  x.  P
)  /  ( z  x.  z ) )  =  ( P  x.  ( P  /  (
z  x.  z ) ) ) )
8581, 84eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( P  /  z
)  x.  ( P  /  z ) )  =  ( P  x.  ( P  /  (
z  x.  z ) ) ) )
8680, 82, 83divcan2d 10803 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( z  x.  z
)  x.  ( P  /  ( z  x.  z ) ) )  =  P )
8786eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  =  ( ( z  x.  z )  x.  ( P  /  (
z  x.  z ) ) ) )
8885, 87breq12d 4666 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( ( P  / 
z )  x.  ( P  /  z ) )  <_  P  <->  ( P  x.  ( P  /  (
z  x.  z ) ) )  <_  (
( z  x.  z
)  x.  ( P  /  ( z  x.  z ) ) ) ) )
8979, 88bitr4d 271 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  <->  ( ( P  /  z )  x.  ( P  /  z
) )  <_  P
) )
9089biimpd 219 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  ->  (
( P  /  z
)  x.  ( P  /  z ) )  <_  P ) )
9180, 48, 40divcan2d 10803 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  ( P  /  z ) )  =  P )
92 dvds0lem 14992 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  ZZ  /\  ( P  /  z
)  e.  ZZ  /\  P  e.  ZZ )  /\  ( z  x.  ( P  /  z ) )  =  P )  -> 
( P  /  z
)  ||  P )
9337, 45, 42, 91, 92syl31anc 1329 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  z )  ||  P )
9490, 93jctird 567 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  ->  (
( ( P  / 
z )  x.  ( P  /  z ) )  <_  P  /\  ( P  /  z )  ||  P ) ) )
95 oveq12 6659 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  ( P  /  z )  /\  x  =  ( P  /  z ) )  ->  ( x  x.  x )  =  ( ( P  /  z
)  x.  ( P  /  z ) ) )
9695anidms 677 . . . . . . . . . . . . . . 15  |-  ( x  =  ( P  / 
z )  ->  (
x  x.  x )  =  ( ( P  /  z )  x.  ( P  /  z
) ) )
9796breq1d 4663 . . . . . . . . . . . . . 14  |-  ( x  =  ( P  / 
z )  ->  (
( x  x.  x
)  <_  P  <->  ( ( P  /  z )  x.  ( P  /  z
) )  <_  P
) )
98 breq1 4656 . . . . . . . . . . . . . 14  |-  ( x  =  ( P  / 
z )  ->  (
x  ||  P  <->  ( P  /  z )  ||  P ) )
9997, 98anbi12d 747 . . . . . . . . . . . . 13  |-  ( x  =  ( P  / 
z )  ->  (
( ( x  x.  x )  <_  P  /\  x  ||  P )  <-> 
( ( ( P  /  z )  x.  ( P  /  z
) )  <_  P  /\  ( P  /  z
)  ||  P )
) )
10099rspcev 3309 . . . . . . . . . . . 12  |-  ( ( ( P  /  z
)  e.  ( ZZ>= ` 
2 )  /\  (
( ( P  / 
z )  x.  ( P  /  z ) )  <_  P  /\  ( P  /  z )  ||  P ) )  ->  E. x  e.  ( ZZ>=
`  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) )
10171, 94, 100syl6an 568 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
10272, 57letrid 10189 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( z  x.  z
)  <_  P  \/  P  <_  ( z  x.  z ) ) )
10334, 101, 102mpjaod 396 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) )
104103ex 450 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
z  ||  P  /\  -.  z  =  P
)  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
10525, 104syl5bir 233 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( -.  ( z  ||  P  ->  z  =  P )  ->  E. x  e.  (
ZZ>= `  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) ) )
106105rexlimdva 3031 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( E. z  e.  ( ZZ>= ` 
2 )  -.  (
z  ||  P  ->  z  =  P )  ->  E. x  e.  ( ZZ>=
`  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) ) )
107 prmz 15389 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  z  e.  ZZ )
108107ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  e.  ZZ )
109108zred 11482 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  e.  RR )
110109, 109remulcld 10070 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  x.  z
)  e.  RR )
111 eluzelz 11697 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  ZZ )
112111ad3antlr 767 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  ZZ )
113112zred 11482 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  RR )
114113, 113remulcld 10070 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( x  x.  x
)  e.  RR )
11541ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  P  e.  ZZ )
116115zred 11482 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  P  e.  RR )
117 eluz2nn 11726 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  NN )
118117ad3antlr 767 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  NN )
119 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  ||  x )
120 dvdsle 15032 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  x  e.  NN )  ->  ( z  ||  x  ->  z  <_  x )
)
121120imp 445 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  ZZ  /\  x  e.  NN )  /\  z  ||  x
)  ->  z  <_  x )
122108, 118, 119, 121syl21anc 1325 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  <_  x )
123 eluzge2nn0 11727 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN0 )
124123nn0ge0d 11354 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ZZ>= `  2
)  ->  0  <_  z )
1252, 124syl 17 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  0  <_ 
z )
126125ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
0  <_  z )
127 nnnn0 11299 . . . . . . . . . . . . . . . 16  |-  ( x  e.  NN  ->  x  e.  NN0 )
128127nn0ge0d 11354 . . . . . . . . . . . . . . 15  |-  ( x  e.  NN  ->  0  <_  x )
129118, 128syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
0  <_  x )
130 le2msq 10923 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  RR  /\  0  <_  z )  /\  ( x  e.  RR  /\  0  <_  x )
)  ->  ( z  <_  x  <->  ( z  x.  z )  <_  (
x  x.  x ) ) )
131109, 126, 113, 129, 130syl22anc 1327 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  <_  x  <->  ( z  x.  z )  <_  ( x  x.  x ) ) )
132122, 131mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  x.  z
)  <_  ( x  x.  x ) )
133 simplrl 800 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( x  x.  x
)  <_  P )
134110, 114, 116, 132, 133letrd 10194 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  x.  z
)  <_  P )
135 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  ||  P )
136 dvdstr 15018 . . . . . . . . . . . . 13  |-  ( ( z  e.  ZZ  /\  x  e.  ZZ  /\  P  e.  ZZ )  ->  (
( z  ||  x  /\  x  ||  P )  ->  z  ||  P
) )
137108, 112, 115, 136syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( ( z  ||  x  /\  x  ||  P
)  ->  z  ||  P ) )
138119, 135, 137mp2and 715 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  ||  P )
139134, 138jc 159 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) )
140 exprmfct 15416 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  2
)  ->  E. z  e.  Prime  z  ||  x
)
141140ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  x  e.  ( ZZ>= ` 
2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P ) )  ->  E. z  e.  Prime  z  ||  x
)
142139, 141reximddv 3018 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  x  e.  ( ZZ>= ` 
2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P ) )  ->  E. z  e.  Prime  -.  ( (
z  x.  z )  <_  P  ->  -.  z  ||  P ) )
143142ex 450 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( ZZ>= `  2 )
)  ->  ( (
( x  x.  x
)  <_  P  /\  x  ||  P )  ->  E. z  e.  Prime  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
144143rexlimdva 3031 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( E. x  e.  ( ZZ>= ` 
2 ) ( ( x  x.  x )  <_  P  /\  x  ||  P )  ->  E. z  e.  Prime  -.  ( (
z  x.  z )  <_  P  ->  -.  z  ||  P ) ) )
145106, 144syld 47 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( E. z  e.  ( ZZ>= ` 
2 )  -.  (
z  ||  P  ->  z  =  P )  ->  E. z  e.  Prime  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
146 rexnal 2995 . . . . . 6  |-  ( E. z  e.  ( ZZ>= ` 
2 )  -.  (
z  ||  P  ->  z  =  P )  <->  -.  A. z  e.  ( ZZ>= `  2 )
( z  ||  P  ->  z  =  P ) )
147 rexnal 2995 . . . . . 6  |-  ( E. z  e.  Prime  -.  (
( z  x.  z
)  <_  P  ->  -.  z  ||  P )  <->  -.  A. z  e.  Prime  ( ( z  x.  z
)  <_  P  ->  -.  z  ||  P ) )
148145, 146, 1473imtr3g 284 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( -.  A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  ->  -.  A. z  e.  Prime  (
( z  x.  z
)  <_  P  ->  -.  z  ||  P ) ) )
14924, 148impcon4bid 217 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  <->  A. z  e.  Prime  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) ) )
150 prmnn 15388 . . . . . . . . 9  |-  ( z  e.  Prime  ->  z  e.  NN )
151150nncnd 11036 . . . . . . . 8  |-  ( z  e.  Prime  ->  z  e.  CC )
152151sqvald 13005 . . . . . . 7  |-  ( z  e.  Prime  ->  ( z ^ 2 )  =  ( z  x.  z
) )
153152breq1d 4663 . . . . . 6  |-  ( z  e.  Prime  ->  ( ( z ^ 2 )  <_  P  <->  ( z  x.  z )  <_  P
) )
154153imbi1d 331 . . . . 5  |-  ( z  e.  Prime  ->  ( ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P )  <-> 
( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
155154ralbiia 2979 . . . 4  |-  ( A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P )  <->  A. z  e.  Prime  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) )
156149, 155syl6bbr 278 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  <->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
157156pm5.32i 669 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
1581, 157bitri 264 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ^cexp 12860    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  isprm7  15420  pockthg  15610  prmlem1a  15813
  Copyright terms: Public domain W3C validator