MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0a Structured version   Visualization version   Unicode version

Theorem itg1ge0a 23478
Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1  |-  ( ph  ->  F  e.  dom  S.1 )
itg10a.2  |-  ( ph  ->  A  C_  RR )
itg10a.3  |-  ( ph  ->  ( vol* `  A )  =  0 )
itg1ge0a.4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  0  <_  ( F `  x ) )
Assertion
Ref Expression
itg1ge0a  |-  ( ph  ->  0  <_  ( S.1 `  F ) )
Distinct variable groups:    x, A    x, F    ph, x

Proof of Theorem itg1ge0a
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . . . 5  |-  ( ph  ->  F  e.  dom  S.1 )
2 i1frn 23444 . . . . 5  |-  ( F  e.  dom  S.1  ->  ran 
F  e.  Fin )
31, 2syl 17 . . . 4  |-  ( ph  ->  ran  F  e.  Fin )
4 difss 3737 . . . 4  |-  ( ran 
F  \  { 0 } )  C_  ran  F
5 ssfi 8180 . . . 4  |-  ( ( ran  F  e.  Fin  /\  ( ran  F  \  { 0 } ) 
C_  ran  F )  ->  ( ran  F  \  { 0 } )  e.  Fin )
63, 4, 5sylancl 694 . . 3  |-  ( ph  ->  ( ran  F  \  { 0 } )  e.  Fin )
7 i1ff 23443 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
81, 7syl 17 . . . . . . 7  |-  ( ph  ->  F : RR --> RR )
9 frn 6053 . . . . . . 7  |-  ( F : RR --> RR  ->  ran 
F  C_  RR )
108, 9syl 17 . . . . . 6  |-  ( ph  ->  ran  F  C_  RR )
1110ssdifssd 3748 . . . . 5  |-  ( ph  ->  ( ran  F  \  { 0 } ) 
C_  RR )
1211sselda 3603 . . . 4  |-  ( (
ph  /\  k  e.  ( ran  F  \  {
0 } ) )  ->  k  e.  RR )
13 i1fima2sn 23447 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  k  e.  ( ran 
F  \  { 0 } ) )  -> 
( vol `  ( `' F " { k } ) )  e.  RR )
141, 13sylan 488 . . . 4  |-  ( (
ph  /\  k  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { k } ) )  e.  RR )
1512, 14remulcld 10070 . . 3  |-  ( (
ph  /\  k  e.  ( ran  F  \  {
0 } ) )  ->  ( k  x.  ( vol `  ( `' F " { k } ) ) )  e.  RR )
16 0le0 11110 . . . . 5  |-  0  <_  0
17 i1fima 23445 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  ( `' F " { k } )  e.  dom  vol )
181, 17syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( `' F " { k } )  e.  dom  vol )
19 mblvol 23298 . . . . . . . . . 10  |-  ( ( `' F " { k } )  e.  dom  vol 
->  ( vol `  ( `' F " { k } ) )  =  ( vol* `  ( `' F " { k } ) ) )
2018, 19syl 17 . . . . . . . . 9  |-  ( ph  ->  ( vol `  ( `' F " { k } ) )  =  ( vol* `  ( `' F " { k } ) ) )
2120ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  ( vol `  ( `' F " { k } ) )  =  ( vol* `  ( `' F " { k } ) ) )
22 ffn 6045 . . . . . . . . . . . . . 14  |-  ( F : RR --> RR  ->  F  Fn  RR )
238, 22syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  RR )
24 fniniseg 6338 . . . . . . . . . . . . 13  |-  ( F  Fn  RR  ->  (
x  e.  ( `' F " { k } )  <->  ( x  e.  RR  /\  ( F `
 x )  =  k ) ) )
2523, 24syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( `' F " { k } )  <->  ( x  e.  RR  /\  ( F `
 x )  =  k ) ) )
2625ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  (
x  e.  ( `' F " { k } )  <->  ( x  e.  RR  /\  ( F `
 x )  =  k ) ) )
27 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  x  e.  RR )
28 eldif 3584 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( RR  \  A )  <->  ( x  e.  RR  /\  -.  x  e.  A ) )
29 itg1ge0a.4 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  0  <_  ( F `  x ) )
3029ex 450 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( x  e.  ( RR  \  A )  ->  0  <_  ( F `  x )
) )
3130ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  ( x  e.  ( RR  \  A
)  ->  0  <_  ( F `  x ) ) )
32 simprr 796 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  ( F `  x )  =  k )
3332breq2d 4665 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  ( 0  <_ 
( F `  x
)  <->  0  <_  k
) )
34 0red 10041 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  0  e.  RR )
3512adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  k  e.  RR )
3634, 35lenltd 10183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  ( 0  <_ 
k  <->  -.  k  <  0 ) )
3733, 36bitrd 268 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  ( 0  <_ 
( F `  x
)  <->  -.  k  <  0 ) )
3831, 37sylibd 229 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  ( x  e.  ( RR  \  A
)  ->  -.  k  <  0 ) )
3928, 38syl5bir 233 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  ( ( x  e.  RR  /\  -.  x  e.  A )  ->  -.  k  <  0
) )
4027, 39mpand 711 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  ( -.  x  e.  A  ->  -.  k  <  0 ) )
4140con4d 114 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  ( x  e.  RR  /\  ( F `  x )  =  k ) )  ->  ( k  <  0  ->  x  e.  A ) )
4241impancom 456 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  (
( x  e.  RR  /\  ( F `  x
)  =  k )  ->  x  e.  A
) )
4326, 42sylbid 230 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  (
x  e.  ( `' F " { k } )  ->  x  e.  A ) )
4443ssrdv 3609 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  ( `' F " { k } )  C_  A
)
45 itg10a.2 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
4645ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  A  C_  RR )
47 itg10a.3 . . . . . . . . . 10  |-  ( ph  ->  ( vol* `  A )  =  0 )
4847ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  ( vol* `  A )  =  0 )
49 ovolssnul 23255 . . . . . . . . 9  |-  ( ( ( `' F " { k } ) 
C_  A  /\  A  C_  RR  /\  ( vol* `  A )  =  0 )  -> 
( vol* `  ( `' F " { k } ) )  =  0 )
5044, 46, 48, 49syl3anc 1326 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  ( vol* `  ( `' F " { k } ) )  =  0 )
5121, 50eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  ( vol `  ( `' F " { k } ) )  =  0 )
5251oveq2d 6666 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  (
k  x.  ( vol `  ( `' F " { k } ) ) )  =  ( k  x.  0 ) )
5312recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ran  F  \  {
0 } ) )  ->  k  e.  CC )
5453adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  k  e.  CC )
5554mul01d 10235 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  (
k  x.  0 )  =  0 )
5652, 55eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  (
k  x.  ( vol `  ( `' F " { k } ) ) )  =  0 )
5716, 56syl5breqr 4691 . . . 4  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  k  <  0 )  ->  0  <_  ( k  x.  ( vol `  ( `' F " { k } ) ) ) )
5812adantr 481 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  0  <_ 
k )  ->  k  e.  RR )
5914adantr 481 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  0  <_ 
k )  ->  ( vol `  ( `' F " { k } ) )  e.  RR )
60 simpr 477 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  0  <_ 
k )  ->  0  <_  k )
6118ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  0  <_ 
k )  ->  ( `' F " { k } )  e.  dom  vol )
62 mblss 23299 . . . . . . . 8  |-  ( ( `' F " { k } )  e.  dom  vol 
->  ( `' F " { k } ) 
C_  RR )
6361, 62syl 17 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  0  <_ 
k )  ->  ( `' F " { k } )  C_  RR )
64 ovolge0 23249 . . . . . . 7  |-  ( ( `' F " { k } )  C_  RR  ->  0  <_  ( vol* `  ( `' F " { k } ) ) )
6563, 64syl 17 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  0  <_ 
k )  ->  0  <_  ( vol* `  ( `' F " { k } ) ) )
6620ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  0  <_ 
k )  ->  ( vol `  ( `' F " { k } ) )  =  ( vol* `  ( `' F " { k } ) ) )
6765, 66breqtrrd 4681 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  0  <_ 
k )  ->  0  <_  ( vol `  ( `' F " { k } ) ) )
6858, 59, 60, 67mulge0d 10604 . . . 4  |-  ( ( ( ph  /\  k  e.  ( ran  F  \  { 0 } ) )  /\  0  <_ 
k )  ->  0  <_  ( k  x.  ( vol `  ( `' F " { k } ) ) ) )
69 0red 10041 . . . 4  |-  ( (
ph  /\  k  e.  ( ran  F  \  {
0 } ) )  ->  0  e.  RR )
7057, 68, 12, 69ltlecasei 10145 . . 3  |-  ( (
ph  /\  k  e.  ( ran  F  \  {
0 } ) )  ->  0  <_  (
k  x.  ( vol `  ( `' F " { k } ) ) ) )
716, 15, 70fsumge0 14527 . 2  |-  ( ph  ->  0  <_  sum_ k  e.  ( ran  F  \  { 0 } ) ( k  x.  ( vol `  ( `' F " { k } ) ) ) )
72 itg1val 23450 . . 3  |-  ( F  e.  dom  S.1  ->  ( S.1 `  F )  =  sum_ k  e.  ( ran  F  \  {
0 } ) ( k  x.  ( vol `  ( `' F " { k } ) ) ) )
731, 72syl 17 . 2  |-  ( ph  ->  ( S.1 `  F
)  =  sum_ k  e.  ( ran  F  \  { 0 } ) ( k  x.  ( vol `  ( `' F " { k } ) ) ) )
7471, 73breqtrrd 4681 1  |-  ( ph  ->  0  <_  ( S.1 `  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    < clt 10074    <_ cle 10075   sum_csu 14416   vol*covol 23231   volcvol 23232   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  itg1lea  23479
  Copyright terms: Public domain W3C validator