MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulclem Structured version   Visualization version   Unicode version

Theorem itg2mulclem 23513
Description: Lemma for itg2mulc 23514. (Contributed by Mario Carneiro, 8-Jul-2014.)
Hypotheses
Ref Expression
itg2mulc.2  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2mulc.3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
itg2mulclem.4  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
itg2mulclem  |-  ( ph  ->  ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) )  <_  ( A  x.  ( S.2 `  F ) ) )

Proof of Theorem itg2mulclem
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . . . 7  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
2 icossicc 12260 . . . . . . 7  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
3 fss 6056 . . . . . . 7  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  F : RR --> ( 0 [,] +oo ) )
41, 2, 3sylancl 694 . . . . . 6  |-  ( ph  ->  F : RR --> ( 0 [,] +oo ) )
54adantr 481 . . . . 5  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  F : RR --> ( 0 [,] +oo ) )
6 simpr 477 . . . . . 6  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  f  e.  dom  S.1 )
7 itg2mulclem.4 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
87rpreccld 11882 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  e.  RR+ )
98adantr 481 . . . . . . 7  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
1  /  A )  e.  RR+ )
109rpred 11872 . . . . . 6  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
1  /  A )  e.  RR )
116, 10i1fmulc 23470 . . . . 5  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
( RR  X.  {
( 1  /  A
) } )  oF  x.  f )  e.  dom  S.1 )
12 itg2ub 23500 . . . . . 6  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  f
)  e.  dom  S.1  /\  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  f
)  oR  <_  F )  ->  ( S.1 `  ( ( RR 
X.  { ( 1  /  A ) } )  oF  x.  f ) )  <_ 
( S.2 `  F ) )
13123expia 1267 . . . . 5  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  f
)  e.  dom  S.1 )  ->  ( ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  f )  oR  <_  F  ->  ( S.1 `  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  f ) )  <_  ( S.2 `  F
) ) )
145, 11, 13syl2anc 693 . . . 4  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
( ( RR  X.  { ( 1  /  A ) } )  oF  x.  f
)  oR  <_  F  ->  ( S.1 `  (
( RR  X.  {
( 1  /  A
) } )  oF  x.  f ) )  <_  ( S.2 `  F ) ) )
15 i1ff 23443 . . . . . . . . . 10  |-  ( f  e.  dom  S.1  ->  f : RR --> RR )
1615adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  f : RR --> RR )
1716ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  (
f `  y )  e.  RR )
18 rge0ssre 12280 . . . . . . . . . . 11  |-  ( 0 [,) +oo )  C_  RR
19 fss 6056 . . . . . . . . . . 11  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  ->  F : RR --> RR )
201, 18, 19sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  F : RR --> RR )
2120adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  F : RR --> RR )
2221ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  ( F `  y )  e.  RR )
237rpred 11872 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
2423ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  A  e.  RR )
257rpgt0d 11875 . . . . . . . . 9  |-  ( ph  ->  0  <  A )
2625ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  0  <  A )
27 ledivmul 10899 . . . . . . . 8  |-  ( ( ( f `  y
)  e.  RR  /\  ( F `  y )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( ( f `
 y )  /  A )  <_  ( F `  y )  <->  ( f `  y )  <_  ( A  x.  ( F `  y ) ) ) )
2817, 22, 24, 26, 27syl112anc 1330 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  (
( ( f `  y )  /  A
)  <_  ( F `  y )  <->  ( f `  y )  <_  ( A  x.  ( F `  y ) ) ) )
2917recnd 10068 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  (
f `  y )  e.  CC )
3024recnd 10068 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  A  e.  CC )
317adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  A  e.  RR+ )
3231rpne0d 11877 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  A  =/=  0 )
3332adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  A  =/=  0 )
3429, 30, 33divrec2d 10805 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  (
( f `  y
)  /  A )  =  ( ( 1  /  A )  x.  ( f `  y
) ) )
3534breq1d 4663 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  (
( ( f `  y )  /  A
)  <_  ( F `  y )  <->  ( (
1  /  A )  x.  ( f `  y ) )  <_ 
( F `  y
) ) )
3628, 35bitr3d 270 . . . . . 6  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  (
( f `  y
)  <_  ( A  x.  ( F `  y
) )  <->  ( (
1  /  A )  x.  ( f `  y ) )  <_ 
( F `  y
) ) )
3736ralbidva 2985 . . . . 5  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  ( A. y  e.  RR  ( f `  y
)  <_  ( A  x.  ( F `  y
) )  <->  A. y  e.  RR  ( ( 1  /  A )  x.  ( f `  y
) )  <_  ( F `  y )
) )
38 reex 10027 . . . . . . 7  |-  RR  e.  _V
3938a1i 11 . . . . . 6  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  RR  e.  _V )
40 ovexd 6680 . . . . . 6  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  ( A  x.  ( F `  y ) )  e. 
_V )
4116feqmptd 6249 . . . . . 6  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  f  =  ( y  e.  RR  |->  ( f `  y ) ) )
427ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  A  e.  RR+ )
43 fconstmpt 5163 . . . . . . . 8  |-  ( RR 
X.  { A }
)  =  ( y  e.  RR  |->  A )
4443a1i 11 . . . . . . 7  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  ( RR  X.  { A }
)  =  ( y  e.  RR  |->  A ) )
451feqmptd 6249 . . . . . . . 8  |-  ( ph  ->  F  =  ( y  e.  RR  |->  ( F `
 y ) ) )
4645adantr 481 . . . . . . 7  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  F  =  ( y  e.  RR  |->  ( F `  y ) ) )
4739, 42, 22, 44, 46offval2 6914 . . . . . 6  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
( RR  X.  { A } )  oF  x.  F )  =  ( y  e.  RR  |->  ( A  x.  ( F `  y )
) ) )
4839, 17, 40, 41, 47ofrfval2 6915 . . . . 5  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
f  oR  <_ 
( ( RR  X.  { A } )  oF  x.  F )  <->  A. y  e.  RR  ( f `  y
)  <_  ( A  x.  ( F `  y
) ) ) )
49 ovexd 6680 . . . . . 6  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  (
( 1  /  A
)  x.  ( f `
 y ) )  e.  _V )
508ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  y  e.  RR )  ->  (
1  /  A )  e.  RR+ )
51 fconstmpt 5163 . . . . . . . 8  |-  ( RR 
X.  { ( 1  /  A ) } )  =  ( y  e.  RR  |->  ( 1  /  A ) )
5251a1i 11 . . . . . . 7  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  ( RR  X.  { ( 1  /  A ) } )  =  ( y  e.  RR  |->  ( 1  /  A ) ) )
5339, 50, 17, 52, 41offval2 6914 . . . . . 6  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
( RR  X.  {
( 1  /  A
) } )  oF  x.  f )  =  ( y  e.  RR  |->  ( ( 1  /  A )  x.  ( f `  y
) ) ) )
5439, 49, 22, 53, 46ofrfval2 6915 . . . . 5  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
( ( RR  X.  { ( 1  /  A ) } )  oF  x.  f
)  oR  <_  F 
<-> 
A. y  e.  RR  ( ( 1  /  A )  x.  (
f `  y )
)  <_  ( F `  y ) ) )
5537, 48, 543bitr4d 300 . . . 4  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
f  oR  <_ 
( ( RR  X.  { A } )  oF  x.  F )  <-> 
( ( RR  X.  { ( 1  /  A ) } )  oF  x.  f
)  oR  <_  F ) )
566, 10itg1mulc 23471 . . . . . . 7  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  ( S.1 `  ( ( RR 
X.  { ( 1  /  A ) } )  oF  x.  f ) )  =  ( ( 1  /  A )  x.  ( S.1 `  f ) ) )
57 itg1cl 23452 . . . . . . . . . 10  |-  ( f  e.  dom  S.1  ->  ( S.1 `  f )  e.  RR )
5857adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  ( S.1 `  f )  e.  RR )
5958recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  ( S.1 `  f )  e.  CC )
6023adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  A  e.  RR )
6160recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  A  e.  CC )
6259, 61, 32divrec2d 10805 . . . . . . 7  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
( S.1 `  f )  /  A )  =  ( ( 1  /  A )  x.  ( S.1 `  f ) ) )
6356, 62eqtr4d 2659 . . . . . 6  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  ( S.1 `  ( ( RR 
X.  { ( 1  /  A ) } )  oF  x.  f ) )  =  ( ( S.1 `  f
)  /  A ) )
6463breq1d 4663 . . . . 5  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
( S.1 `  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  f ) )  <_  ( S.2 `  F
)  <->  ( ( S.1 `  f )  /  A
)  <_  ( S.2 `  F ) ) )
65 itg2mulc.3 . . . . . . 7  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
6665adantr 481 . . . . . 6  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  ( S.2 `  F )  e.  RR )
6725adantr 481 . . . . . 6  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  0  <  A )
68 ledivmul 10899 . . . . . 6  |-  ( ( ( S.1 `  f
)  e.  RR  /\  ( S.2 `  F )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( ( S.1 `  f )  /  A
)  <_  ( S.2 `  F )  <->  ( S.1 `  f )  <_  ( A  x.  ( S.2 `  F ) ) ) )
6958, 66, 60, 67, 68syl112anc 1330 . . . . 5  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
( ( S.1 `  f
)  /  A )  <_  ( S.2 `  F
)  <->  ( S.1 `  f
)  <_  ( A  x.  ( S.2 `  F
) ) ) )
7064, 69bitr2d 269 . . . 4  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
( S.1 `  f )  <_  ( A  x.  ( S.2 `  F ) )  <->  ( S.1 `  (
( RR  X.  {
( 1  /  A
) } )  oF  x.  f ) )  <_  ( S.2 `  F ) ) )
7114, 55, 703imtr4d 283 . . 3  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
f  oR  <_ 
( ( RR  X.  { A } )  oF  x.  F )  ->  ( S.1 `  f
)  <_  ( A  x.  ( S.2 `  F
) ) ) )
7271ralrimiva 2966 . 2  |-  ( ph  ->  A. f  e.  dom  S.1 ( f  oR  <_  ( ( RR 
X.  { A }
)  oF  x.  F )  ->  ( S.1 `  f )  <_ 
( A  x.  ( S.2 `  F ) ) ) )
73 ge0mulcl 12285 . . . . . 6  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  x.  y )  e.  ( 0 [,) +oo )
)
7473adantl 482 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo )
) )  ->  (
x  x.  y )  e.  ( 0 [,) +oo ) )
75 fconstg 6092 . . . . . . 7  |-  ( A  e.  RR+  ->  ( RR 
X.  { A }
) : RR --> { A } )
767, 75syl 17 . . . . . 6  |-  ( ph  ->  ( RR  X.  { A } ) : RR --> { A } )
77 rpre 11839 . . . . . . . . 9  |-  ( A  e.  RR+  ->  A  e.  RR )
78 rpge0 11845 . . . . . . . . 9  |-  ( A  e.  RR+  ->  0  <_  A )
79 elrege0 12278 . . . . . . . . 9  |-  ( A  e.  ( 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) )
8077, 78, 79sylanbrc 698 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  ( 0 [,) +oo ) )
817, 80syl 17 . . . . . . 7  |-  ( ph  ->  A  e.  ( 0 [,) +oo ) )
8281snssd 4340 . . . . . 6  |-  ( ph  ->  { A }  C_  ( 0 [,) +oo ) )
8376, 82fssd 6057 . . . . 5  |-  ( ph  ->  ( RR  X.  { A } ) : RR --> ( 0 [,) +oo ) )
8438a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  _V )
85 inidm 3822 . . . . 5  |-  ( RR 
i^i  RR )  =  RR
8674, 83, 1, 84, 84, 85off 6912 . . . 4  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,) +oo ) )
87 fss 6056 . . . 4  |-  ( ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  (
( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,] +oo ) )
8886, 2, 87sylancl 694 . . 3  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,] +oo ) )
8923, 65remulcld 10070 . . . 4  |-  ( ph  ->  ( A  x.  ( S.2 `  F ) )  e.  RR )
9089rexrd 10089 . . 3  |-  ( ph  ->  ( A  x.  ( S.2 `  F ) )  e.  RR* )
91 itg2leub 23501 . . 3  |-  ( ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,] +oo )  /\  ( A  x.  ( S.2 `  F ) )  e.  RR* )  ->  (
( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  <_  ( A  x.  ( S.2 `  F ) )  <->  A. f  e.  dom  S.1 ( f  oR  <_  ( ( RR 
X.  { A }
)  oF  x.  F )  ->  ( S.1 `  f )  <_ 
( A  x.  ( S.2 `  F ) ) ) ) )
9288, 90, 91syl2anc 693 . 2  |-  ( ph  ->  ( ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) )  <_  ( A  x.  ( S.2 `  F ) )  <->  A. f  e.  dom  S.1 ( f  oR  <_  ( ( RR 
X.  { A }
)  oF  x.  F )  ->  ( S.1 `  f )  <_ 
( A  x.  ( S.2 `  F ) ) ) ) )
9372, 92mpbird 247 1  |-  ( ph  ->  ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) )  <_  ( A  x.  ( S.2 `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   RR+crp 11832   [,)cico 12177   [,]cicc 12178   S.1citg1 23384   S.2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390
This theorem is referenced by:  itg2mulc  23514
  Copyright terms: Public domain W3C validator