MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir Structured version   Visualization version   GIF version

Theorem lgsdir 25057
Description: The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). Together with lgsqr 25076 this implies that the product of two quadratic residues or nonresidues is a residue, and the product of a residue and a nonresidue is a nonresidue. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))

Proof of Theorem lgsdir
Dummy variables 𝑘 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 9994 . . . . . . 7 1 ∈ ℂ
2 0cn 10032 . . . . . . 7 0 ∈ ℂ
31, 2keepel 4155 . . . . . 6 if((𝐵↑2) = 1, 1, 0) ∈ ℂ
43mulid2i 10043 . . . . 5 (1 · if((𝐵↑2) = 1, 1, 0)) = if((𝐵↑2) = 1, 1, 0)
5 iftrue 4092 . . . . . . 7 ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 1)
65adantl 482 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) = 1)
76oveq1d 6665 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = (1 · if((𝐵↑2) = 1, 1, 0)))
8 simpl1 1064 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
98zcnd 11483 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℂ)
109ad2antrr 762 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐴 ∈ ℂ)
11 simpl2 1065 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
1211zcnd 11483 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
1312ad2antrr 762 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐵 ∈ ℂ)
1410, 13sqmuld 13020 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))
15 simpr 477 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐴↑2) = 1)
1615oveq1d 6665 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴↑2) · (𝐵↑2)) = (1 · (𝐵↑2)))
1712sqcld 13006 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵↑2) ∈ ℂ)
1817ad2antrr 762 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐵↑2) ∈ ℂ)
1918mulid2d 10058 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (1 · (𝐵↑2)) = (𝐵↑2))
2014, 16, 193eqtrd 2660 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = (𝐵↑2))
2120eqeq1d 2624 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (((𝐴 · 𝐵)↑2) = 1 ↔ (𝐵↑2) = 1))
2221ifbid 4108 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = if((𝐵↑2) = 1, 1, 0))
234, 7, 223eqtr4a 2682 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
243mul02i 10225 . . . . 5 (0 · if((𝐵↑2) = 1, 1, 0)) = 0
25 iffalse 4095 . . . . . . 7 (¬ (𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 0)
2625adantl 482 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) = 0)
2726oveq1d 6665 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = (0 · if((𝐵↑2) = 1, 1, 0)))
28 dvdsmul1 15003 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
298, 11, 28syl2anc 693 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∥ (𝐴 · 𝐵))
308, 11zmulcld 11488 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℤ)
31 dvdssq 15280 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐴 · 𝐵) ∈ ℤ) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)))
328, 30, 31syl2anc 693 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)))
3329, 32mpbid 222 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))
3433adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))
35 breq2 4657 . . . . . . . . 9 (((𝐴 · 𝐵)↑2) = 1 → ((𝐴↑2) ∥ ((𝐴 · 𝐵)↑2) ↔ (𝐴↑2) ∥ 1))
3634, 35syl5ibcom 235 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) ∥ 1))
37 simprl 794 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
3837neneqd 2799 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ 𝐴 = 0)
39 sqeq0 12927 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
409, 39syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
4138, 40mtbird 315 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ (𝐴↑2) = 0)
42 zsqcl2 12941 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0)
438, 42syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈ ℕ0)
44 elnn0 11294 . . . . . . . . . . . . . . . 16 ((𝐴↑2) ∈ ℕ0 ↔ ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0))
4543, 44sylib 208 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0))
4645ord 392 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (¬ (𝐴↑2) ∈ ℕ → (𝐴↑2) = 0))
4741, 46mt3d 140 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈ ℕ)
4847adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℕ)
4948nnzd 11481 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℤ)
50 1nn 11031 . . . . . . . . . . 11 1 ∈ ℕ
51 dvdsle 15032 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1))
5249, 50, 51sylancl 694 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1))
5348nnge1d 11063 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → 1 ≤ (𝐴↑2))
5452, 53jctird 567 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5548nnred 11035 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℝ)
56 1re 10039 . . . . . . . . . 10 1 ∈ ℝ
57 letri3 10123 . . . . . . . . . 10 (((𝐴↑2) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5855, 56, 57sylancl 694 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5954, 58sylibrd 249 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) = 1))
6036, 59syld 47 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) = 1))
6160con3dimp 457 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → ¬ ((𝐴 · 𝐵)↑2) = 1)
6261iffalsed 4097 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = 0)
6324, 27, 623eqtr4a 2682 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
6423, 63pm2.61dan 832 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
65 oveq2 6658 . . . . 5 (𝑁 = 0 → (𝐴 /L 𝑁) = (𝐴 /L 0))
66 lgs0 25035 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
678, 66syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
6865, 67sylan9eqr 2678 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = if((𝐴↑2) = 1, 1, 0))
69 oveq2 6658 . . . . 5 (𝑁 = 0 → (𝐵 /L 𝑁) = (𝐵 /L 0))
70 lgs0 25035 . . . . . 6 (𝐵 ∈ ℤ → (𝐵 /L 0) = if((𝐵↑2) = 1, 1, 0))
7111, 70syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵 /L 0) = if((𝐵↑2) = 1, 1, 0))
7269, 71sylan9eqr 2678 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐵 /L 𝑁) = if((𝐵↑2) = 1, 1, 0))
7368, 72oveq12d 6668 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)))
74 oveq2 6658 . . . 4 (𝑁 = 0 → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 · 𝐵) /L 0))
75 lgs0 25035 . . . . 5 ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7630, 75syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7774, 76sylan9eqr 2678 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7864, 73, 773eqtr4rd 2667 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
79 lgsdilem 25049 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
8079adantr 481 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
81 mulcl 10020 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
8281adantl 482 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
83 mulcom 10022 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
8483adantl 482 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
85 mulass 10024 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
8685adantl 482 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
87 simpl3 1066 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝑁 ∈ ℤ)
88 nnabscl 14065 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
8987, 88sylan 488 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
90 nnuz 11723 . . . . . 6 ℕ = (ℤ‘1)
9189, 90syl6eleq 2711 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ (ℤ‘1))
92 simpll1 1100 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
93 simpll3 1102 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
94 simpr 477 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
95 eqid 2622 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
9695lgsfcl3 25043 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
9792, 93, 94, 96syl3anc 1326 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
98 elfznn 12370 . . . . . . 7 (𝑘 ∈ (1...(abs‘𝑁)) → 𝑘 ∈ ℕ)
99 ffvelrn 6357 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
10097, 98, 99syl2an 494 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
101100zcnd 11483 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
102 simpll2 1101 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐵 ∈ ℤ)
103 eqid 2622 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
104103lgsfcl3 25043 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
105102, 93, 94, 104syl3anc 1326 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
106 ffvelrn 6357 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
107105, 98, 106syl2an 494 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
108107zcnd 11483 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
10992adantr 481 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
110102adantr 481 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐵 ∈ ℤ)
111 simpr 477 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
112 lgsdirprm 25056 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘)))
113109, 110, 111, 112syl3anc 1326 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘)))
114113oveq1d 6665 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁)))
115 prmz 15389 . . . . . . . . . . . . 13 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
116 lgscl 25036 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
11792, 115, 116syl2an 494 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
118117zcnd 11483 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
119 lgscl 25036 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐵 /L 𝑘) ∈ ℤ)
120102, 115, 119syl2an 494 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈ ℤ)
121120zcnd 11483 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈ ℂ)
12293adantr 481 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
12394adantr 481 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
124 pczcl 15553 . . . . . . . . . . . 12 ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈ ℕ0)
125111, 122, 123, 124syl12anc 1324 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
126118, 121, 125mulexpd 13023 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
127114, 126eqtrd 2656 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
128 iftrue 4092 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
129128adantl 482 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
130 iftrue 4092 . . . . . . . . . . 11 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
131 iftrue 4092 . . . . . . . . . . 11 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))
132130, 131oveq12d 6668 . . . . . . . . . 10 (𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
133132adantl 482 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
134127, 129, 1333eqtr4d 2666 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
135 1t1e1 11175 . . . . . . . . . . 11 (1 · 1) = 1
136135eqcomi 2631 . . . . . . . . . 10 1 = (1 · 1)
137 iffalse 4095 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
138 iffalse 4095 . . . . . . . . . . 11 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
139 iffalse 4095 . . . . . . . . . . 11 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
140138, 139oveq12d 6668 . . . . . . . . . 10 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (1 · 1))
141136, 137, 1403eqtr4a 2682 . . . . . . . . 9 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
142141adantl 482 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ ¬ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
143134, 142pm2.61dan 832 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
144143adantr 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
14598adantl 482 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → 𝑘 ∈ ℕ)
146 eleq1 2689 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
147 oveq2 6658 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 · 𝐵) /L 𝑛) = ((𝐴 · 𝐵) /L 𝑘))
148 oveq1 6657 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁))
149147, 148oveq12d 6668 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
150146, 149ifbieq1d 4109 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
151 eqid 2622 . . . . . . . 8 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
152 ovex 6678 . . . . . . . . 9 (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
153 1ex 10035 . . . . . . . . 9 1 ∈ V
154152, 153ifex 4156 . . . . . . . 8 if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
155150, 151, 154fvmpt 6282 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
156145, 155syl 17 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
157 oveq2 6658 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
158157, 148oveq12d 6668 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
159146, 158ifbieq1d 4109 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
160 ovex 6678 . . . . . . . . . 10 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
161160, 153ifex 4156 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
162159, 95, 161fvmpt 6282 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
163145, 162syl 17 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
164 oveq2 6658 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐵 /L 𝑛) = (𝐵 /L 𝑘))
165164, 148oveq12d 6668 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))
166146, 165ifbieq1d 4109 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
167 ovex 6678 . . . . . . . . . 10 ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
168167, 153ifex 4156 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
169166, 103, 168fvmpt 6282 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
170145, 169syl 17 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
171163, 170oveq12d 6668 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
172144, 156, 1713eqtr4d 2666 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)))
17382, 84, 86, 91, 101, 108, 172seqcaopr 12838 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17480, 173oveq12d 6668 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
17530adantr 481 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 · 𝐵) ∈ ℤ)
176151lgsval4 25042 . . . 4 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
177175, 93, 94, 176syl3anc 1326 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17895lgsval4 25042 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17992, 93, 94, 178syl3anc 1326 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
180103lgsval4 25042 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
181102, 93, 94, 180syl3anc 1326 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
182179, 181oveq12d 6668 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
183 neg1cn 11124 . . . . . . 7 -1 ∈ ℂ
184183, 1keepel 4155 . . . . . 6 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
185184a1i 11 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
186 mulcl 10020 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
187186adantl 482 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
18891, 101, 187seqcl 12821 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
189183, 1keepel 4155 . . . . . 6 if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈ ℂ
190189a1i 11 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈ ℂ)
19191, 108, 187seqcl 12821 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
192185, 188, 190, 191mul4d 10248 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
193182, 192eqtrd 2656 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
194174, 177, 1933eqtr4d 2666 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
19578, 194pm2.61dane 2881 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  ifcif 4086   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075  -cneg 10267  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  cexp 12860  abscabs 13974  cdvds 14983  cprime 15385   pCnt cpc 15541   /L clgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-lgs 25020
This theorem is referenced by:  lgssq  25062  lgsmulsqcoprm  25068  lgsdirnn0  25069  lgsquad2lem1  25109
  Copyright terms: Public domain W3C validator