Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4b Structured version   Visualization version   GIF version

Theorem lighneallem4b 41526
Description: Lemma 2 for lighneallem4 41527. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4b ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem lighneallem4b
StepHypRef Expression
1 2z 11409 . . 3 2 ∈ ℤ
21a1i 11 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ∈ ℤ)
3 fzfid 12772 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (0...(𝑀 − 1)) ∈ Fin)
4 neg1z 11413 . . . . . . 7 -1 ∈ ℤ
5 elfznn0 12433 . . . . . . 7 (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0)
6 zexpcl 12875 . . . . . . 7 ((-1 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
74, 5, 6sylancr 695 . . . . . 6 (𝑘 ∈ (0...(𝑀 − 1)) → (-1↑𝑘) ∈ ℤ)
87adantl 482 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (-1↑𝑘) ∈ ℤ)
9 eluzge2nn0 11727 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
109adantr 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ0)
1110adantr 481 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝐴 ∈ ℕ0)
125adantl 482 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝑘 ∈ ℕ0)
1311, 12nn0expcld 13031 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℕ0)
1413nn0zd 11480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℤ)
158, 14zmulcld 11488 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
163, 15fsumzcl 14466 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
17163adant3 1081 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
18 simp1 1061 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ (ℤ‘2))
19 3z 11410 . . . . 5 3 ∈ ℤ
2019a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ∈ ℤ)
21 eluzelz 11697 . . . . 5 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
22213ad2ant2 1083 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
23 eluz2 11693 . . . . . . 7 (𝑀 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀))
24 2re 11090 . . . . . . . . . . . 12 2 ∈ ℝ
2524a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 2 ∈ ℝ)
26 zre 11381 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2725, 26leloed 10180 . . . . . . . . . 10 (𝑀 ∈ ℤ → (2 ≤ 𝑀 ↔ (2 < 𝑀 ∨ 2 = 𝑀)))
28 zltp1le 11427 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
291, 28mpan 706 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
3029biimpd 219 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (2 < 𝑀 → (2 + 1) ≤ 𝑀))
31 df-3 11080 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
3231breq1i 4660 . . . . . . . . . . . . . . 15 (3 ≤ 𝑀 ↔ (2 + 1) ≤ 𝑀)
3330, 32syl6ibr 242 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀))
3433a1i 11 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑀 → (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀)))
3534com13 88 . . . . . . . . . . . 12 (2 < 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
36 z2even 15106 . . . . . . . . . . . . . . 15 2 ∥ 2
37 breq2 4657 . . . . . . . . . . . . . . 15 (2 = 𝑀 → (2 ∥ 2 ↔ 2 ∥ 𝑀))
3836, 37mpbii 223 . . . . . . . . . . . . . 14 (2 = 𝑀 → 2 ∥ 𝑀)
3938pm2.24d 147 . . . . . . . . . . . . 13 (2 = 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4039a1d 25 . . . . . . . . . . . 12 (2 = 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4135, 40jaoi 394 . . . . . . . . . . 11 ((2 < 𝑀 ∨ 2 = 𝑀) → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4241com12 32 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((2 < 𝑀 ∨ 2 = 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4327, 42sylbid 230 . . . . . . . . 9 (𝑀 ∈ ℤ → (2 ≤ 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4443imp 445 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
45443adant1 1079 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4623, 45sylbi 207 . . . . . 6 (𝑀 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4746imp 445 . . . . 5 ((𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
48473adant1 1079 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
49 eluz2 11693 . . . 4 (𝑀 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 3 ≤ 𝑀))
5020, 22, 48, 49syl3anbrc 1246 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ (ℤ‘3))
51 eluzelcn 11699 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
52513ad2ant1 1082 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ ℂ)
53 eluz2nn 11726 . . . . . . . 8 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
54533ad2ant2 1083 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℕ)
55 simp3 1063 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
5652, 54, 55oddpwp1fsum 15115 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
5756eqcomd 2628 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1))
58 eluzge2nn0 11727 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ0)
5958adantl 482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝑀 ∈ ℕ0)
6010, 59nn0expcld 13031 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℕ0)
6160nn0cnd 11353 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℂ)
62 peano2cn 10208 . . . . . . . 8 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀) + 1) ∈ ℂ)
6361, 62syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → ((𝐴𝑀) + 1) ∈ ℂ)
64633adant3 1081 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) ∈ ℂ)
6517zcnd 11483 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
66 eluz2nn 11726 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
6766peano2nnd 11037 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℕ)
6867nncnd 11036 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℂ)
6967nnne0d 11065 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≠ 0)
7068, 69jca 554 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
71703ad2ant1 1082 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
72 divmul 10688 . . . . . 6 ((((𝐴𝑀) + 1) ∈ ℂ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ ∧ ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0)) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7364, 65, 71, 72syl3anc 1326 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7457, 73mpbird 247 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → (((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7574eqcomd 2628 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1)))
76 lighneallem4a 41525 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7718, 50, 75, 76syl3anc 1326 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
78 eluz2 11693 . 2 𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ ∧ 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
792, 17, 77, 78syl3anbrc 1246 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cexp 12860  Σcsu 14416  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984
This theorem is referenced by:  lighneallem4  41527
  Copyright terms: Public domain W3C validator