Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4a Structured version   Visualization version   GIF version

Theorem lighneallem4a 41525
Description: Lemma 1 for lighneallem4 41527. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4a ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)

Proof of Theorem lighneallem4a
StepHypRef Expression
1 2re 11090 . . . . . . . 8 2 ∈ ℝ
21a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
3 eluzelre 11698 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
4 peano2re 10209 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℝ)
62, 5remulcld 10070 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · (𝐴 + 1)) ∈ ℝ)
76adantr 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ∈ ℝ)
8 eluzge2nn0 11727 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
98adantr 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℕ0)
10 eluzge3nn 11730 . . . . . . . . 9 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ)
1110nnnn0d 11351 . . . . . . . 8 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ0)
1211adantl 482 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ0)
139, 12nn0expcld 13031 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℕ0)
1413nn0red 11352 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℝ)
15 peano2re 10209 . . . . . 6 ((𝐴𝑀) ∈ ℝ → ((𝐴𝑀) + 1) ∈ ℝ)
1614, 15syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) + 1) ∈ ℝ)
172, 3remulcld 10070 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
182, 17remulcld 10070 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · (2 · 𝐴)) ∈ ℝ)
1918adantr 481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ∈ ℝ)
20 1red 10055 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 eluz2nn 11726 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
2221nnge1d 11063 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ≤ 𝐴)
2320, 3, 3, 22leadd2dd 10642 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (𝐴 + 𝐴))
24 eluzelcn 11699 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25242timesd 11275 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) = (𝐴 + 𝐴))
2623, 25breqtrrd 4681 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (2 · 𝐴))
2726adantr 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 + 1) ≤ (2 · 𝐴))
28 2pos 11112 . . . . . . . . . . . 12 0 < 2
291, 28pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
315, 17, 303jca 1242 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
3231adantr 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
33 lemul2 10876 . . . . . . . 8 (((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3432, 33syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3527, 34mpbid 222 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴)))
36 2cn 11091 . . . . . . . . 9 2 ∈ ℂ
3736a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℂ)
3824adantr 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℂ)
3937, 37, 38mulassd 10063 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
40 sq2 12960 . . . . . . . . . . . 12 (2↑2) = 4
41 4re 11097 . . . . . . . . . . . 12 4 ∈ ℝ
4240, 41eqeltri 2697 . . . . . . . . . . 11 (2↑2) ∈ ℝ
4342a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ∈ ℝ)
44 nn0sqcl 12887 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
458, 44syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ0)
4645nn0red 11352 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
4746adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ∈ ℝ)
48 nnm1nn0 11334 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
4910, 48syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℕ0)
5049adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℕ0)
519, 50nn0expcld 13031 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℕ0)
5251nn0red 11352 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℝ)
53 2nn0 11309 . . . . . . . . . . . . . 14 2 ∈ ℕ0
5453a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℕ0)
552, 3, 543jca 1242 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
5655adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
57 0le2 11111 . . . . . . . . . . . 12 0 ≤ 2
5857a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 0 ≤ 2)
59 eluzle 11700 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ≤ 𝐴)
6059adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ 𝐴)
61 leexp1a 12919 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 2 ∧ 2 ≤ 𝐴)) → (2↑2) ≤ (𝐴↑2))
6256, 58, 60, 61syl12anc 1324 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑2))
63 2p1e3 11151 . . . . . . . . . . . . . 14 (2 + 1) = 3
64 eluzle 11700 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
6563, 64syl5eqbr 4688 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑀)
66 1red 10055 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 1 ∈ ℝ)
67 eluzelre 11698 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℝ)
68 leaddsub 10504 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
691, 66, 67, 68mp3an2i 1429 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
7065, 69mpbid 222 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘3) → 2 ≤ (𝑀 − 1))
7170adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (𝑀 − 1))
723adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℝ)
73 2z 11409 . . . . . . . . . . . . 13 2 ∈ ℤ
7473a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℤ)
75 eluzelz 11697 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℤ)
76 peano2zm 11420 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℤ)
7877adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℤ)
79 eluz2gt1 11760 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
8079adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 1 < 𝐴)
8172, 74, 78, 80leexp2d 13039 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ≤ (𝑀 − 1) ↔ (𝐴↑2) ≤ (𝐴↑(𝑀 − 1))))
8271, 81mpbid 222 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ≤ (𝐴↑(𝑀 − 1)))
8343, 47, 52, 62, 82letrd 10194 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑(𝑀 − 1)))
8436sqvali 12943 . . . . . . . . . . 11 (2↑2) = (2 · 2)
8584eqcomi 2631 . . . . . . . . . 10 (2 · 2) = (2↑2)
8685a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) = (2↑2))
87 eluz2n0 11728 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ≠ 0)
8887adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ≠ 0)
8975adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℤ)
9038, 88, 89expm1d 13018 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) = ((𝐴𝑀) / 𝐴))
9190eqcomd 2628 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) / 𝐴) = (𝐴↑(𝑀 − 1)))
9283, 86, 913brtr4d 4685 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) ≤ ((𝐴𝑀) / 𝐴))
931, 1remulcli 10054 . . . . . . . . 9 (2 · 2) ∈ ℝ
9421nngt0d 11064 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 < 𝐴)
953, 94jca 554 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
9695adantr 481 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
97 lemuldiv 10903 . . . . . . . . 9 (((2 · 2) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9893, 14, 96, 97mp3an2i 1429 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9992, 98mpbird 247 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) ≤ (𝐴𝑀))
10039, 99eqbrtrrd 4677 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ≤ (𝐴𝑀))
1017, 19, 14, 35, 100letrd 10194 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (𝐴𝑀))
10214lep1d 10955 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ≤ ((𝐴𝑀) + 1))
1037, 14, 16, 101, 102letrd 10194 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1))
104 nnnn0 11299 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
105 nn0p1gt0 11322 . . . . . . . 8 (𝐴 ∈ ℕ0 → 0 < (𝐴 + 1))
10621, 104, 1053syl 18 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 < (𝐴 + 1))
1075, 106jca 554 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
108107adantr 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
109 lemuldiv 10903 . . . . 5 ((2 ∈ ℝ ∧ ((𝐴𝑀) + 1) ∈ ℝ ∧ ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1))) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1101, 16, 108, 109mp3an2i 1429 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
111103, 110mpbid 222 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
1121113adant3 1081 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
113 breq2 4657 . . 3 (𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1)) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1141133ad2ant3 1084 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
115112, 114mpbird 247 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  0cn0 11292  cz 11377  cuz 11687  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861
This theorem is referenced by:  lighneallem4b  41526
  Copyright terms: Public domain W3C validator