Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalpr Structured version   Visualization version   GIF version

Theorem lincvalpr 42207
Description: The linear combination over an unordered pair. (Contributed by AV, 16-Apr-2019.)
Hypotheses
Ref Expression
lincvalsn.b 𝐵 = (Base‘𝑀)
lincvalsn.s 𝑆 = (Scalar‘𝑀)
lincvalsn.r 𝑅 = (Base‘𝑆)
lincvalsn.t · = ( ·𝑠𝑀)
lincvalpr.p + = (+g𝑀)
lincvalpr.f 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}
Assertion
Ref Expression
lincvalpr (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))

Proof of Theorem lincvalpr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑀 ∈ LMod)
213ad2ant1 1082 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ LMod)
3 lincvalsn.r . . . . . . . . 9 𝑅 = (Base‘𝑆)
4 lincvalsn.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑀)
54fveq2i 6194 . . . . . . . . 9 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
63, 5eqtri 2644 . . . . . . . 8 𝑅 = (Base‘(Scalar‘𝑀))
76eleq2i 2693 . . . . . . 7 (𝑋𝑅𝑋 ∈ (Base‘(Scalar‘𝑀)))
87biimpi 206 . . . . . 6 (𝑋𝑅𝑋 ∈ (Base‘(Scalar‘𝑀)))
98anim2i 593 . . . . 5 ((𝑉𝐵𝑋𝑅) → (𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))))
1093ad2ant2 1083 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))))
116eleq2i 2693 . . . . . . 7 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
1211biimpi 206 . . . . . 6 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
1312anim2i 593 . . . . 5 ((𝑊𝐵𝑌𝑅) → (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))))
14133ad2ant3 1084 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))))
15 fvexd 6203 . . . . . . 7 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
1615anim2i 593 . . . . . 6 ((𝑉𝑊𝑀 ∈ LMod) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
1716ancoms 469 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
18173ad2ant1 1082 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V))
19 lincvalpr.f . . . . 5 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}
2019mapprop 42124 . . . 4 (((𝑉𝐵𝑋 ∈ (Base‘(Scalar‘𝑀))) ∧ (𝑊𝐵𝑌 ∈ (Base‘(Scalar‘𝑀))) ∧ (𝑉𝑊 ∧ (Base‘(Scalar‘𝑀)) ∈ V)) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 {𝑉, 𝑊}))
2110, 14, 18, 20syl3anc 1326 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 {𝑉, 𝑊}))
22 lincvalsn.b . . . . . . . 8 𝐵 = (Base‘𝑀)
2322eleq2i 2693 . . . . . . 7 (𝑉𝐵𝑉 ∈ (Base‘𝑀))
2423biimpi 206 . . . . . 6 (𝑉𝐵𝑉 ∈ (Base‘𝑀))
2524adantr 481 . . . . 5 ((𝑉𝐵𝑋𝑅) → 𝑉 ∈ (Base‘𝑀))
2622eleq2i 2693 . . . . . . 7 (𝑊𝐵𝑊 ∈ (Base‘𝑀))
2726biimpi 206 . . . . . 6 (𝑊𝐵𝑊 ∈ (Base‘𝑀))
2827adantr 481 . . . . 5 ((𝑊𝐵𝑌𝑅) → 𝑊 ∈ (Base‘𝑀))
29 prelpwi 4915 . . . . 5 ((𝑉 ∈ (Base‘𝑀) ∧ 𝑊 ∈ (Base‘𝑀)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
3025, 28, 29syl2an 494 . . . 4 (((𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
31303adant1 1079 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀))
32 lincval 42198 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 {𝑉, 𝑊}) ∧ {𝑉, 𝑊} ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
332, 21, 31, 32syl3anc 1326 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
34 lmodcmn 18911 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
3534adantr 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑀 ∈ CMnd)
36353ad2ant1 1082 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ CMnd)
37 simpr 477 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝑊) → 𝑉𝑊)
38 simpl 473 . . . . 5 ((𝑉𝐵𝑋𝑅) → 𝑉𝐵)
39 simpl 473 . . . . 5 ((𝑊𝐵𝑌𝑅) → 𝑊𝐵)
4037, 38, 393anim123i 1247 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝑊𝑉𝐵𝑊𝐵))
41 3anrot 1043 . . . 4 ((𝑉𝑊𝑉𝐵𝑊𝐵) ↔ (𝑉𝐵𝑊𝐵𝑉𝑊))
4240, 41sylib 208 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑉𝐵𝑊𝐵𝑉𝑊))
4319a1i 11 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩})
4443fveq1d 6193 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝐹𝑉) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉))
45 simprl 794 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑉𝐵)
46 simprr 796 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑋𝑅)
4737adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑉𝑊)
48 fvpr1g 6458 . . . . . . . 8 ((𝑉𝐵𝑋𝑅𝑉𝑊) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
4945, 46, 47, 48syl3anc 1326 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
5044, 49eqtrd 2656 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝐹𝑉) = 𝑋)
5150oveq1d 6665 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) = (𝑋( ·𝑠𝑀)𝑉))
521adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → 𝑀 ∈ LMod)
53 eqid 2622 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5422, 4, 53, 3lmodvscl 18880 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝑅𝑉𝐵) → (𝑋( ·𝑠𝑀)𝑉) ∈ 𝐵)
5552, 46, 45, 54syl3anc 1326 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → (𝑋( ·𝑠𝑀)𝑉) ∈ 𝐵)
5651, 55eqeltrd 2701 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
57563adant3 1081 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
5819a1i 11 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝐹 = {⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩})
5958fveq1d 6193 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊))
60 simprl 794 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊𝐵)
61 simprr 796 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑌𝑅)
6237adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝑊)
63 fvpr2g 6459 . . . . . . . 8 ((𝑊𝐵𝑌𝑅𝑉𝑊) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
6460, 61, 62, 63syl3anc 1326 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
6559, 64eqtrd 2656 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = 𝑌)
6665oveq1d 6665 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) = (𝑌( ·𝑠𝑀)𝑊))
671adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → 𝑀 ∈ LMod)
6822, 4, 53, 3lmodvscl 18880 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑌𝑅𝑊𝐵) → (𝑌( ·𝑠𝑀)𝑊) ∈ 𝐵)
6967, 61, 60, 68syl3anc 1326 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → (𝑌( ·𝑠𝑀)𝑊) ∈ 𝐵)
7066, 69eqeltrd 2701 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)
71703adant2 1080 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)
72 lincvalpr.p . . . 4 + = (+g𝑀)
73 fveq2 6191 . . . . 5 (𝑣 = 𝑉 → (𝐹𝑣) = (𝐹𝑉))
74 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
7573, 74oveq12d 6668 . . . 4 (𝑣 = 𝑉 → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝐹𝑉)( ·𝑠𝑀)𝑉))
76 fveq2 6191 . . . . 5 (𝑣 = 𝑊 → (𝐹𝑣) = (𝐹𝑊))
77 id 22 . . . . 5 (𝑣 = 𝑊𝑣 = 𝑊)
7876, 77oveq12d 6668 . . . 4 (𝑣 = 𝑊 → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝐹𝑊)( ·𝑠𝑀)𝑊))
7922, 72, 75, 78gsumpr 42139 . . 3 ((𝑀 ∈ CMnd ∧ (𝑉𝐵𝑊𝐵𝑉𝑊) ∧ (((𝐹𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵 ∧ ((𝐹𝑊)( ·𝑠𝑀)𝑊) ∈ 𝐵)) → (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)))
8036, 42, 57, 71, 79syl112anc 1330 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝑀 Σg (𝑣 ∈ {𝑉, 𝑊} ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)))
81 lincvalsn.t . . . . . 6 · = ( ·𝑠𝑀)
8281a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → · = ( ·𝑠𝑀))
8382eqcomd 2628 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ( ·𝑠𝑀) = · )
8419fveq1i 6192 . . . . 5 (𝐹𝑉) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉)
85383ad2ant2 1083 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝐵)
86 simpr 477 . . . . . . 7 ((𝑉𝐵𝑋𝑅) → 𝑋𝑅)
87863ad2ant2 1083 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑋𝑅)
88373ad2ant1 1082 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉𝑊)
8985, 87, 88, 48syl3anc 1326 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑉) = 𝑋)
9084, 89syl5eq 2668 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑉) = 𝑋)
91 eqidd 2623 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑉 = 𝑉)
9283, 90, 91oveq123d 6671 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑉)( ·𝑠𝑀)𝑉) = (𝑋 · 𝑉))
9319fveq1i 6192 . . . . 5 (𝐹𝑊) = ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊)
94393ad2ant3 1084 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊𝐵)
95 simpr 477 . . . . . . 7 ((𝑊𝐵𝑌𝑅) → 𝑌𝑅)
96953ad2ant3 1084 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑌𝑅)
9794, 96, 88, 63syl3anc 1326 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ({⟨𝑉, 𝑋⟩, ⟨𝑊, 𝑌⟩}‘𝑊) = 𝑌)
9893, 97syl5eq 2668 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹𝑊) = 𝑌)
99 eqidd 2623 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → 𝑊 = 𝑊)
10083, 98, 99oveq123d 6671 . . 3 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → ((𝐹𝑊)( ·𝑠𝑀)𝑊) = (𝑌 · 𝑊))
10192, 100oveq12d 6668 . 2 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (((𝐹𝑉)( ·𝑠𝑀)𝑉) + ((𝐹𝑊)( ·𝑠𝑀)𝑊)) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))
10233, 80, 1013eqtrd 2660 1 (((𝑀 ∈ LMod ∧ 𝑉𝑊) ∧ (𝑉𝐵𝑋𝑅) ∧ (𝑊𝐵𝑌𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  𝒫 cpw 4158  {cpr 4179  cop 4183  cmpt 4729  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945   Σg cgsu 16101  CMndccmn 18193  LModclmod 18863   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-linc 42195
This theorem is referenced by:  ldepspr  42262
  Copyright terms: Public domain W3C validator