MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolv Structured version   Visualization version   Unicode version

Theorem lspsolv 19143
Description: If  X is in the span of  A  u.  { Y } but not  A, then  Y is in the span of  A  u.  { X }. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v  |-  V  =  ( Base `  W
)
lspsolv.s  |-  S  =  ( LSubSp `  W )
lspsolv.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsolv  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  Y  e.  ( N `  ( A  u.  { X }
) ) )

Proof of Theorem lspsolv
Dummy variables  r 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.v . . 3  |-  V  =  ( Base `  W
)
2 lspsolv.s . . 3  |-  S  =  ( LSubSp `  W )
3 lspsolv.n . . 3  |-  N  =  ( LSpan `  W )
4 eqid 2622 . . 3  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2622 . . 3  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
6 eqid 2622 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
7 eqid 2622 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
8 eqid 2622 . . 3  |-  { z  e.  V  |  E. r  e.  ( Base `  (Scalar `  W )
) ( z ( +g  `  W ) ( r ( .s
`  W ) Y ) )  e.  ( N `  A ) }  =  { z  e.  V  |  E. r  e.  ( Base `  (Scalar `  W )
) ( z ( +g  `  W ) ( r ( .s
`  W ) Y ) )  e.  ( N `  A ) }
9 lveclmod 19106 . . . 4  |-  ( W  e.  LVec  ->  W  e. 
LMod )
109adantr 481 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  W  e.  LMod )
11 simpr1 1067 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  A  C_  V
)
12 simpr2 1068 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  Y  e.  V
)
13 simpr3 1069 . . . 4  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) )
1413eldifad 3586 . . 3  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  X  e.  ( N `  ( A  u.  { Y }
) ) )
151, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14lspsolvlem 19142 . 2  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  E. r  e.  (
Base `  (Scalar `  W
) ) ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) )
164lvecdrng 19105 . . . . . . 7  |-  ( W  e.  LVec  ->  (Scalar `  W )  e.  DivRing )
1716ad2antrr 762 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
(Scalar `  W )  e.  DivRing )
18 simprl 794 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
r  e.  ( Base `  (Scalar `  W )
) )
1910adantr 481 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  W  e.  LMod )
2012adantr 481 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  Y  e.  V )
21 eqid 2622 . . . . . . . . . . . . 13  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
22 eqid 2622 . . . . . . . . . . . . 13  |-  ( 0g
`  W )  =  ( 0g `  W
)
231, 4, 7, 21, 22lmod0vs 18896 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) Y )  =  ( 0g `  W ) )
2419, 20, 23syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y )  =  ( 0g `  W
) )
2524oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  =  ( X ( +g  `  W ) ( 0g
`  W ) ) )
2611adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  A  C_  V )
2720snssd 4340 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  { Y }  C_  V
)
2826, 27unssd 3789 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( A  u.  { Y } )  C_  V
)
291, 3lspssv 18983 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  ( A  u.  { Y } )  C_  V
)  ->  ( N `  ( A  u.  { Y } ) )  C_  V )
3019, 28, 29syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( N `  ( A  u.  { Y } ) )  C_  V )
3130ssdifssd 3748 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) )  C_  V
)
3213adantr 481 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  ( ( N `  ( A  u.  { Y } ) )  \  ( N `
 A ) ) )
3331, 32sseldd 3604 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  V )
341, 6, 22lmod0vrid 18894 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X ( +g  `  W
) ( 0g `  W ) )  =  X )
3519, 33, 34syl2anc 693 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( 0g
`  W ) )  =  X )
3625, 35eqtrd 2656 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  =  X )
3736, 32eqeltrd 2701 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) )
3837eldifbd 3587 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  -.  ( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  e.  ( N `  A
) )
39 simprr 796 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( r ( .s `  W
) Y ) )  e.  ( N `  A ) )
40 oveq1 6657 . . . . . . . . . . 11  |-  ( r  =  ( 0g `  (Scalar `  W ) )  ->  ( r ( .s `  W ) Y )  =  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )
4140oveq2d 6666 . . . . . . . . . 10  |-  ( r  =  ( 0g `  (Scalar `  W ) )  ->  ( X ( +g  `  W ) ( r ( .s
`  W ) Y ) )  =  ( X ( +g  `  W
) ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
4241eleq1d 2686 . . . . . . . . 9  |-  ( r  =  ( 0g `  (Scalar `  W ) )  ->  ( ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
)  <->  ( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Y ) )  e.  ( N `  A ) ) )
4339, 42syl5ibcom 235 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( r  =  ( 0g `  (Scalar `  W ) )  -> 
( X ( +g  `  W ) ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )  e.  ( N `  A
) ) )
4443necon3bd 2808 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( -.  ( X ( +g  `  W
) ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y ) )  e.  ( N `
 A )  -> 
r  =/=  ( 0g
`  (Scalar `  W )
) ) )
4538, 44mpd 15 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
r  =/=  ( 0g
`  (Scalar `  W )
) )
46 eqid 2622 . . . . . . 7  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
47 eqid 2622 . . . . . . 7  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
48 eqid 2622 . . . . . . 7  |-  ( invr `  (Scalar `  W )
)  =  ( invr `  (Scalar `  W )
)
495, 21, 46, 47, 48drnginvrl 18766 . . . . . 6  |-  ( ( (Scalar `  W )  e.  DivRing  /\  r  e.  ( Base `  (Scalar `  W
) )  /\  r  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( (
invr `  (Scalar `  W
) ) `  r
) ( .r `  (Scalar `  W ) ) r )  =  ( 1r `  (Scalar `  W ) ) )
5017, 18, 45, 49syl3anc 1326 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  r )
( .r `  (Scalar `  W ) ) r )  =  ( 1r
`  (Scalar `  W )
) )
5150oveq1d 6665 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  r
) ( .r `  (Scalar `  W ) ) r ) ( .s
`  W ) Y )  =  ( ( 1r `  (Scalar `  W ) ) ( .s `  W ) Y ) )
525, 21, 48drnginvrcl 18764 . . . . . 6  |-  ( ( (Scalar `  W )  e.  DivRing  /\  r  e.  ( Base `  (Scalar `  W
) )  /\  r  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( invr `  (Scalar `  W )
) `  r )  e.  ( Base `  (Scalar `  W ) ) )
5317, 18, 45, 52syl3anc 1326 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( invr `  (Scalar `  W ) ) `  r )  e.  (
Base `  (Scalar `  W
) ) )
541, 4, 7, 5, 46lmodvsass 18888 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( ( invr `  (Scalar `  W ) ) `  r )  e.  (
Base `  (Scalar `  W
) )  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )
)  ->  ( (
( ( invr `  (Scalar `  W ) ) `  r ) ( .r
`  (Scalar `  W )
) r ) ( .s `  W ) Y )  =  ( ( ( invr `  (Scalar `  W ) ) `  r ) ( .s
`  W ) ( r ( .s `  W ) Y ) ) )
5519, 53, 18, 20, 54syl13anc 1328 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  r
) ( .r `  (Scalar `  W ) ) r ) ( .s
`  W ) Y )  =  ( ( ( invr `  (Scalar `  W ) ) `  r ) ( .s
`  W ) ( r ( .s `  W ) Y ) ) )
561, 4, 7, 47lmodvs1 18891 . . . . 5  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
5719, 20, 56syl2anc 693 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y )  =  Y )
5851, 55, 573eqtr3d 2664 . . 3  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  r )
( .s `  W
) ( r ( .s `  W ) Y ) )  =  Y )
5933snssd 4340 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  { X }  C_  V
)
6026, 59unssd 3789 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( A  u.  { X } )  C_  V
)
611, 2, 3lspcl 18976 . . . . 5  |-  ( ( W  e.  LMod  /\  ( A  u.  { X } )  C_  V
)  ->  ( N `  ( A  u.  { X } ) )  e.  S )
6219, 60, 61syl2anc 693 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( N `  ( A  u.  { X } ) )  e.  S )
631, 4, 7, 5lmodvscl 18880 . . . . . . 7  |-  ( ( W  e.  LMod  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )  ->  ( r ( .s
`  W ) Y )  e.  V )
6419, 18, 20, 63syl3anc 1326 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( r ( .s
`  W ) Y )  e.  V )
65 eqid 2622 . . . . . . 7  |-  ( -g `  W )  =  (
-g `  W )
661, 6, 65lmodvpncan 18916 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) Y )  e.  V  /\  X  e.  V )  ->  (
( ( r ( .s `  W ) Y ) ( +g  `  W ) X ) ( -g `  W
) X )  =  ( r ( .s
`  W ) Y ) )
6719, 64, 33, 66syl3anc 1326 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( r ( .s `  W
) Y ) ( +g  `  W ) X ) ( -g `  W ) X )  =  ( r ( .s `  W ) Y ) )
681, 6lmodcom 18909 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) Y )  e.  V  /\  X  e.  V )  ->  (
( r ( .s
`  W ) Y ) ( +g  `  W
) X )  =  ( X ( +g  `  W ) ( r ( .s `  W
) Y ) ) )
6919, 64, 33, 68syl3anc 1326 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( r ( .s `  W ) Y ) ( +g  `  W ) X )  =  ( X ( +g  `  W ) ( r ( .s
`  W ) Y ) ) )
70 ssun1 3776 . . . . . . . . . 10  |-  A  C_  ( A  u.  { X } )
7170a1i 11 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  A  C_  ( A  u.  { X } ) )
721, 3lspss 18984 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( A  u.  { X } )  C_  V  /\  A  C_  ( A  u.  { X }
) )  ->  ( N `  A )  C_  ( N `  ( A  u.  { X } ) ) )
7319, 60, 71, 72syl3anc 1326 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( N `  A
)  C_  ( N `  ( A  u.  { X } ) ) )
7473, 39sseldd 3604 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( X ( +g  `  W ) ( r ( .s `  W
) Y ) )  e.  ( N `  ( A  u.  { X } ) ) )
7569, 74eqeltrd 2701 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( r ( .s `  W ) Y ) ( +g  `  W ) X )  e.  ( N `  ( A  u.  { X } ) ) )
761, 3lspssid 18985 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( A  u.  { X } )  C_  V
)  ->  ( A  u.  { X } ) 
C_  ( N `  ( A  u.  { X } ) ) )
7719, 60, 76syl2anc 693 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( A  u.  { X } )  C_  ( N `  ( A  u.  { X } ) ) )
78 snidg 4206 . . . . . . . 8  |-  ( X  e.  V  ->  X  e.  { X } )
79 elun2 3781 . . . . . . . 8  |-  ( X  e.  { X }  ->  X  e.  ( A  u.  { X }
) )
8033, 78, 793syl 18 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  ( A  u.  { X } ) )
8177, 80sseldd 3604 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  X  e.  ( N `  ( A  u.  { X } ) ) )
8265, 2lssvsubcl 18944 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  ( A  u.  { X } ) )  e.  S )  /\  (
( ( r ( .s `  W ) Y ) ( +g  `  W ) X )  e.  ( N `  ( A  u.  { X } ) )  /\  X  e.  ( N `  ( A  u.  { X } ) ) ) )  ->  ( (
( r ( .s
`  W ) Y ) ( +g  `  W
) X ) (
-g `  W ) X )  e.  ( N `  ( A  u.  { X }
) ) )
8319, 62, 75, 81, 82syl22anc 1327 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( r ( .s `  W
) Y ) ( +g  `  W ) X ) ( -g `  W ) X )  e.  ( N `  ( A  u.  { X } ) ) )
8467, 83eqeltrrd 2702 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( r ( .s
`  W ) Y )  e.  ( N `
 ( A  u.  { X } ) ) )
854, 7, 5, 2lssvscl 18955 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( N `  ( A  u.  { X } ) )  e.  S )  /\  (
( ( invr `  (Scalar `  W ) ) `  r )  e.  (
Base `  (Scalar `  W
) )  /\  (
r ( .s `  W ) Y )  e.  ( N `  ( A  u.  { X } ) ) ) )  ->  ( (
( invr `  (Scalar `  W
) ) `  r
) ( .s `  W ) ( r ( .s `  W
) Y ) )  e.  ( N `  ( A  u.  { X } ) ) )
8619, 62, 53, 84, 85syl22anc 1327 . . 3  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  r )
( .s `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  ( A  u.  { X } ) ) )
8758, 86eqeltrrd 2702 . 2  |-  ( ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  (
( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  ( X ( +g  `  W
) ( r ( .s `  W ) Y ) )  e.  ( N `  A
) ) )  ->  Y  e.  ( N `  ( A  u.  { X } ) ) )
8815, 87rexlimddv 3035 1  |-  ( ( W  e.  LVec  /\  ( A  C_  V  /\  Y  e.  V  /\  X  e.  ( ( N `  ( A  u.  { Y } ) )  \ 
( N `  A
) ) ) )  ->  Y  e.  ( N `  ( A  u.  { X }
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   -gcsg 17424   1rcur 18501   invrcinvr 18671   DivRingcdr 18747   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lssacsex  19144  lspsnat  19145  lsppratlem1  19147  lsppratlem3  19149  lsppratlem4  19150  lbsextlem4  19161  lindsenlbs  33404
  Copyright terms: Public domain W3C validator