MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccntr Structured version   Visualization version   GIF version

Theorem iccntr 22624
Description: The interior of a closed interval in the standard topology on is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
iccntr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))

Proof of Theorem iccntr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 10085 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 10085 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 icc0 12223 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
41, 2, 3syl2an 494 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
54biimpar 502 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
65fveq2d 6195 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = ((int‘(topGen‘ran (,)))‘∅))
7 retop 22565 . . . . . . 7 (topGen‘ran (,)) ∈ Top
8 ntr0 20885 . . . . . . 7 ((topGen‘ran (,)) ∈ Top → ((int‘(topGen‘ran (,)))‘∅) = ∅)
97, 8ax-mp 5 . . . . . 6 ((int‘(topGen‘ran (,)))‘∅) = ∅
10 0ss 3972 . . . . . 6 ∅ ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
119, 10eqsstri 3635 . . . . 5 ((int‘(topGen‘ran (,)))‘∅) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
126, 11syl6eqss 3655 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
13 iccssre 12255 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
14 uniretop 22566 . . . . . . . 8 ℝ = (topGen‘ran (,))
1514ntrss2 20861 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
167, 13, 15sylancr 695 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
1716adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
181, 2anim12i 590 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
19 uncom 3757 . . . . . . . 8 ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})
20 prunioo 12301 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2119, 20syl5eq 2668 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
22213expa 1265 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2318, 22sylan 488 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2417, 23sseqtr4d 3642 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
25 simpr 477 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
26 simpl 473 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2712, 24, 25, 26ltlecasei 10145 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
2814ntropn 20853 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
297, 13, 28sylancr 695 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
30 eqid 2622 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130rexmet 22594 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
32 eqid 2622 . . . . . . . . . . 11 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3330, 32tgioo 22599 . . . . . . . . . 10 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3433mopni2 22298 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3531, 34mp3an1 1411 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3629, 35sylan 488 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3726ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ)
38 rphalfcl 11858 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
3938adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4037, 39ltsubrpd 11904 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < 𝐴)
4139rpred 11872 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
4237, 41resubcld 10458 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ℝ)
4342, 37ltnled 10184 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2))))
4440, 43mpbid 222 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2)))
45 rpre 11839 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 rphalflt 11860 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
4847adantl 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
4941, 46, 37, 48ltsub2dd 10640 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) < (𝐴 − (𝑥 / 2)))
5037, 46readdcld 10069 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ)
51 ltaddrp 11867 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5237, 51sylancom 701 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5342, 37, 50, 40, 52lttrd 10198 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))
5437, 46resubcld 10458 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ)
5554rexrd 10089 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ*)
5650rexrd 10089 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ*)
57 elioo2 12216 . . . . . . . . . . . . . 14 (((𝐴𝑥) ∈ ℝ* ∧ (𝐴 + 𝑥) ∈ ℝ*) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5855, 56, 57syl2anc 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5942, 49, 53, 58mpbir3and 1245 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6030bl2ioo 22595 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6137, 46, 60syl2anc 693 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6259, 61eleqtrrd 2704 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
63 ssel 3597 . . . . . . . . . . 11 ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6462, 63syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6516ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
6665sseld 3602 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
67 elicc2 12238 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵)))
68 simp2 1062 . . . . . . . . . . . 12 (((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2)))
6967, 68syl6bi 243 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7069ad2antrr 762 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7164, 66, 703syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7244, 71mtod 189 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7372nrexdv 3001 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7436, 73pm2.65da 600 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7533mopni2 22298 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7631, 75mp3an1 1411 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7729, 76sylan 488 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7825ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7938adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
8078, 79ltaddrpd 11905 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 < (𝐵 + (𝑥 / 2)))
8179rpred 11872 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
8278, 81readdcld 10069 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ℝ)
8378, 82ltnled 10184 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 < (𝐵 + (𝑥 / 2)) ↔ ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵))
8480, 83mpbid 222 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵)
8545adantl 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
8678, 85resubcld 10458 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ)
87 ltsubrp 11866 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8878, 87sylancom 701 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8986, 78, 82, 88, 80lttrd 10198 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < (𝐵 + (𝑥 / 2)))
9047adantl 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
9181, 85, 78, 90ltadd2dd 10196 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))
9286rexrd 10089 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ*)
9378, 85readdcld 10069 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
9493rexrd 10089 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
95 elioo2 12216 . . . . . . . . . . . . . 14 (((𝐵𝑥) ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9692, 94, 95syl2anc 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9782, 89, 91, 96mpbir3and 1245 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9830bl2ioo 22595 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9978, 85, 98syl2anc 693 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
10097, 99eleqtrrd 2704 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
101 ssel 3597 . . . . . . . . . . 11 ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
102100, 101syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
10316ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
104103sseld 3602 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
105 elicc2 12238 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵)))
106 simp3 1063 . . . . . . . . . . . 12 (((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵)
107105, 106syl6bi 243 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
108107ad2antrr 762 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
109102, 104, 1083syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
11084, 109mtod 189 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
111110nrexdv 3001 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
11277, 111pm2.65da 600 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
113 eleq1 2689 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
114113notbid 308 . . . . . . 7 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
115 eleq1 2689 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
116115notbid 308 . . . . . . 7 (𝑥 = 𝐵 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
117114, 116ralprg 4234 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ (¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∧ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))))
11874, 112, 117mpbir2and 957 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
119 disjr 4018 . . . . 5 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
120118, 119sylibr 224 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅)
121 disjssun 4036 . . . 4 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
122120, 121syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
12327, 122mpbid 222 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵))
124 iooretop 22569 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
125 ioossicc 12259 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
12614ssntr 20862 . . . 4 ((((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
127124, 125, 126mpanr12 721 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
1287, 13, 127sylancr 695 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
129123, 128eqssd 3620 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cun 3572  cin 3573  wss 3574  c0 3915  {cpr 4179   class class class wbr 4653   × cxp 5112  ran crn 5115  cres 5116  ccom 5118  cfv 5888  (class class class)co 6650  cr 9935   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  (,)cioo 12175  [,]cicc 12178  abscabs 13974  topGenctg 16098  ∞Metcxmt 19731  ballcbl 19733  MetOpencmopn 19736  Topctop 20698  intcnt 20821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824
This theorem is referenced by:  rolle  23753  cmvth  23754  mvth  23755  dvlip  23756  dvlipcn  23757  dvlip2  23758  c1liplem1  23759  dvgt0lem1  23765  dvle  23770  lhop1lem  23776  dvcnvrelem1  23780  dvcvx  23783  dvfsumabs  23786  ftc1cn  23806  ftc2  23807  ftc2ditglem  23808  itgparts  23810  itgsubstlem  23811  efcvx  24203  pige3  24269  logccv  24409  lgamgulmlem2  24756  ftc2re  30676  ftc1cnnc  33484  ftc2nc  33494  areacirc  33505  itgpowd  37800  lhe4.4ex1a  38528  dvmptresicc  40134  dvbdfbdioolem1  40143  itgsin0pilem1  40165  itgsinexplem1  40169  itgcoscmulx  40185  itgiccshift  40196  itgperiod  40197  itgsbtaddcnst  40198  dirkeritg  40319  fourierdlem39  40363  fourierdlem73  40396  etransclem46  40497
  Copyright terms: Public domain W3C validator