MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem9 Structured version   Visualization version   GIF version

Theorem bposlem9 25017
Description: Lemma for bpos 25018. Derive a contradiction. (Contributed by Mario Carneiro, 14-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bposlem7.1 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
bposlem7.2 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
bposlem9.3 (𝜑𝑁 ∈ ℕ)
bposlem9.4 (𝜑64 < 𝑁)
bposlem9.5 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
Assertion
Ref Expression
bposlem9 (𝜑𝜓)
Distinct variable groups:   𝑛,𝑁   𝑛,𝐺   𝜑,𝑛   𝑁,𝑝   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑝)   𝜓(𝑥,𝑛,𝑝)   𝐹(𝑥,𝑛,𝑝)   𝐺(𝑥,𝑝)

Proof of Theorem bposlem9
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 bposlem9.4 . . 3 (𝜑64 < 𝑁)
2 bposlem7.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
3 bposlem7.2 . . . 4 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
4 6nn0 11313 . . . . . 6 6 ∈ ℕ0
5 4nn 11187 . . . . . 6 4 ∈ ℕ
64, 5decnncl 11518 . . . . 5 64 ∈ ℕ
76a1i 11 . . . 4 (𝜑64 ∈ ℕ)
8 bposlem9.3 . . . 4 (𝜑𝑁 ∈ ℕ)
9 ere 14819 . . . . . . . 8 e ∈ ℝ
10 8re 11105 . . . . . . . 8 8 ∈ ℝ
11 egt2lt3 14934 . . . . . . . . . 10 (2 < e ∧ e < 3)
1211simpri 478 . . . . . . . . 9 e < 3
13 3lt8 11219 . . . . . . . . 9 3 < 8
14 3re 11094 . . . . . . . . . 10 3 ∈ ℝ
159, 14, 10lttri 10163 . . . . . . . . 9 ((e < 3 ∧ 3 < 8) → e < 8)
1612, 13, 15mp2an 708 . . . . . . . 8 e < 8
179, 10, 16ltleii 10160 . . . . . . 7 e ≤ 8
18 0re 10040 . . . . . . . . 9 0 ∈ ℝ
19 epos 14935 . . . . . . . . 9 0 < e
2018, 9, 19ltleii 10160 . . . . . . . 8 0 ≤ e
21 8pos 11121 . . . . . . . . 9 0 < 8
2218, 10, 21ltleii 10160 . . . . . . . 8 0 ≤ 8
23 le2sq 12938 . . . . . . . 8 (((e ∈ ℝ ∧ 0 ≤ e) ∧ (8 ∈ ℝ ∧ 0 ≤ 8)) → (e ≤ 8 ↔ (e↑2) ≤ (8↑2)))
249, 20, 10, 22, 23mp4an 709 . . . . . . 7 (e ≤ 8 ↔ (e↑2) ≤ (8↑2))
2517, 24mpbi 220 . . . . . 6 (e↑2) ≤ (8↑2)
2610recni 10052 . . . . . . . 8 8 ∈ ℂ
2726sqvali 12943 . . . . . . 7 (8↑2) = (8 · 8)
28 8t8e64 11662 . . . . . . 7 (8 · 8) = 64
2927, 28eqtri 2644 . . . . . 6 (8↑2) = 64
3025, 29breqtri 4678 . . . . 5 (e↑2) ≤ 64
3130a1i 11 . . . 4 (𝜑 → (e↑2) ≤ 64)
329resqcli 12949 . . . . . 6 (e↑2) ∈ ℝ
3332a1i 11 . . . . 5 (𝜑 → (e↑2) ∈ ℝ)
346nnrei 11029 . . . . . 6 64 ∈ ℝ
3534a1i 11 . . . . 5 (𝜑64 ∈ ℝ)
368nnred 11035 . . . . 5 (𝜑𝑁 ∈ ℝ)
37 ltle 10126 . . . . . . 7 ((64 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (64 < 𝑁64 ≤ 𝑁))
3834, 36, 37sylancr 695 . . . . . 6 (𝜑 → (64 < 𝑁64 ≤ 𝑁))
391, 38mpd 15 . . . . 5 (𝜑64 ≤ 𝑁)
4033, 35, 36, 31, 39letrd 10194 . . . 4 (𝜑 → (e↑2) ≤ 𝑁)
412, 3, 7, 8, 31, 40bposlem7 25015 . . 3 (𝜑 → (64 < 𝑁 → (𝐹𝑁) < (𝐹64)))
421, 41mpd 15 . 2 (𝜑 → (𝐹𝑁) < (𝐹64))
432, 3bposlem8 25016 . . . . 5 ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2))
4443a1i 11 . . . 4 (𝜑 → ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2)))
4544simpld 475 . . 3 (𝜑 → (𝐹64) ∈ ℝ)
46 fveq2 6191 . . . . . . . . . 10 (𝑛 = 𝑁 → (√‘𝑛) = (√‘𝑁))
4746fveq2d 6195 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝑁)))
4847oveq2d 6666 . . . . . . . 8 (𝑛 = 𝑁 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝑁))))
49 oveq1 6657 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛 / 2) = (𝑁 / 2))
5049fveq2d 6195 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝑁 / 2)))
5150oveq2d 6666 . . . . . . . 8 (𝑛 = 𝑁 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝑁 / 2))))
5248, 51oveq12d 6668 . . . . . . 7 (𝑛 = 𝑁 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))))
53 oveq2 6658 . . . . . . . . 9 (𝑛 = 𝑁 → (2 · 𝑛) = (2 · 𝑁))
5453fveq2d 6195 . . . . . . . 8 (𝑛 = 𝑁 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑁)))
5554oveq2d 6666 . . . . . . 7 (𝑛 = 𝑁 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝑁))))
5652, 55oveq12d 6668 . . . . . 6 (𝑛 = 𝑁 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
57 ovex 6678 . . . . . 6 ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ V
5856, 2, 57fvmpt 6282 . . . . 5 (𝑁 ∈ ℕ → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
598, 58syl 17 . . . 4 (𝜑 → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
60 sqrt2re 14980 . . . . . . 7 (√‘2) ∈ ℝ
618nnrpd 11870 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
6261rpsqrtcld 14150 . . . . . . . . 9 (𝜑 → (√‘𝑁) ∈ ℝ+)
63 fveq2 6191 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → (log‘𝑥) = (log‘(√‘𝑁)))
64 id 22 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → 𝑥 = (√‘𝑁))
6563, 64oveq12d 6668 . . . . . . . . . 10 (𝑥 = (√‘𝑁) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝑁)) / (√‘𝑁)))
66 ovex 6678 . . . . . . . . . 10 ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ V
6765, 3, 66fvmpt 6282 . . . . . . . . 9 ((√‘𝑁) ∈ ℝ+ → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6862, 67syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6962relogcld 24369 . . . . . . . . 9 (𝜑 → (log‘(√‘𝑁)) ∈ ℝ)
7069, 62rerpdivcld 11903 . . . . . . . 8 (𝜑 → ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ ℝ)
7168, 70eqeltrd 2701 . . . . . . 7 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℝ)
72 remulcl 10021 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝑁)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
7360, 71, 72sylancr 695 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
74 9re 11107 . . . . . . . 8 9 ∈ ℝ
75 4re 11097 . . . . . . . 8 4 ∈ ℝ
76 4ne0 11117 . . . . . . . 8 4 ≠ 0
7774, 75, 76redivcli 10792 . . . . . . 7 (9 / 4) ∈ ℝ
7861rphalfcld 11884 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ+)
79 fveq2 6191 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → (log‘𝑥) = (log‘(𝑁 / 2)))
80 id 22 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → 𝑥 = (𝑁 / 2))
8179, 80oveq12d 6668 . . . . . . . . . 10 (𝑥 = (𝑁 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
82 ovex 6678 . . . . . . . . . 10 ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ V
8381, 3, 82fvmpt 6282 . . . . . . . . 9 ((𝑁 / 2) ∈ ℝ+ → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8478, 83syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8578relogcld 24369 . . . . . . . . 9 (𝜑 → (log‘(𝑁 / 2)) ∈ ℝ)
8685, 78rerpdivcld 11903 . . . . . . . 8 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
8784, 86eqeltrd 2701 . . . . . . 7 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℝ)
88 remulcl 10021 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝑁 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
8977, 87, 88sylancr 695 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
9073, 89readdcld 10069 . . . . 5 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℝ)
91 2rp 11837 . . . . . . 7 2 ∈ ℝ+
92 relogcl 24322 . . . . . . 7 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
9391, 92ax-mp 5 . . . . . 6 (log‘2) ∈ ℝ
94 rpmulcl 11855 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 · 𝑁) ∈ ℝ+)
9591, 61, 94sylancr 695 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9695rpsqrtcld 14150 . . . . . 6 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ+)
97 rerpdivcl 11861 . . . . . 6 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9893, 96, 97sylancr 695 . . . . 5 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9990, 98readdcld 10069 . . . 4 (𝜑 → ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ ℝ)
10059, 99eqeltrd 2701 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
10193a1i 11 . . . 4 (𝜑 → (log‘2) ∈ ℝ)
10244simprd 479 . . . 4 (𝜑 → (𝐹64) < (log‘2))
103 nnrp 11842 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1045, 103ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
105 relogcl 24322 . . . . . . . . . 10 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
106104, 105ax-mp 5 . . . . . . . . 9 (log‘4) ∈ ℝ
107 remulcl 10021 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (log‘4) ∈ ℝ) → (𝑁 · (log‘4)) ∈ ℝ)
10836, 106, 107sylancl 694 . . . . . . . 8 (𝜑 → (𝑁 · (log‘4)) ∈ ℝ)
10961relogcld 24369 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
110108, 109resubcld 10458 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ)
111 rpre 11839 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → (2 · 𝑁) ∈ ℝ)
112 rpge0 11845 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → 0 ≤ (2 · 𝑁))
113111, 112resqrtcld 14156 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℝ+ → (√‘(2 · 𝑁)) ∈ ℝ)
11495, 113syl 17 . . . . . . . . . . 11 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
115 3nn 11186 . . . . . . . . . . 11 3 ∈ ℕ
116 nndivre 11056 . . . . . . . . . . 11 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
117114, 115, 116sylancl 694 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
118 2re 11090 . . . . . . . . . 10 2 ∈ ℝ
119 readdcl 10019 . . . . . . . . . 10 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
120117, 118, 119sylancl 694 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
12195relogcld 24369 . . . . . . . . 9 (𝜑 → (log‘(2 · 𝑁)) ∈ ℝ)
122120, 121remulcld 10070 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℝ)
123 remulcl 10021 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (4 · 𝑁) ∈ ℝ)
12475, 36, 123sylancr 695 . . . . . . . . . . 11 (𝜑 → (4 · 𝑁) ∈ ℝ)
125 nndivre 11056 . . . . . . . . . . 11 (((4 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((4 · 𝑁) / 3) ∈ ℝ)
126124, 115, 125sylancl 694 . . . . . . . . . 10 (𝜑 → ((4 · 𝑁) / 3) ∈ ℝ)
127 5re 11099 . . . . . . . . . 10 5 ∈ ℝ
128 resubcl 10345 . . . . . . . . . 10 ((((4 · 𝑁) / 3) ∈ ℝ ∧ 5 ∈ ℝ) → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
129126, 127, 128sylancl 694 . . . . . . . . 9 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
130 remulcl 10021 . . . . . . . . 9 (((((4 · 𝑁) / 3) − 5) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
131129, 93, 130sylancl 694 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
132122, 131readdcld 10069 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ)
133 remulcl 10021 . . . . . . . . 9 ((((4 · 𝑁) / 3) ∈ ℝ ∧ (log‘2) ∈ ℝ) → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
134126, 93, 133sylancl 694 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
135134, 109resubcld 10458 . . . . . . 7 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℝ)
1368nnzd 11481 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
137 df-5 11082 . . . . . . . . . . . 12 5 = (4 + 1)
13875a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ∈ ℝ)
139 6nn 11189 . . . . . . . . . . . . . . . 16 6 ∈ ℕ
140 4nn0 11311 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
141 4lt10 11678 . . . . . . . . . . . . . . . 16 4 < 10
142139, 140, 140, 141declti 11546 . . . . . . . . . . . . . . 15 4 < 64
143142a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 < 64)
144138, 35, 36, 143, 1lttrd 10198 . . . . . . . . . . . . 13 (𝜑 → 4 < 𝑁)
145 4z 11411 . . . . . . . . . . . . . 14 4 ∈ ℤ
146 zltp1le 11427 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
147145, 136, 146sylancr 695 . . . . . . . . . . . . 13 (𝜑 → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
148144, 147mpbid 222 . . . . . . . . . . . 12 (𝜑 → (4 + 1) ≤ 𝑁)
149137, 148syl5eqbr 4688 . . . . . . . . . . 11 (𝜑 → 5 ≤ 𝑁)
150 5nn 11188 . . . . . . . . . . . . 13 5 ∈ ℕ
151150nnzi 11401 . . . . . . . . . . . 12 5 ∈ ℤ
152151eluz1i 11695 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) ↔ (𝑁 ∈ ℤ ∧ 5 ≤ 𝑁))
153136, 149, 152sylanbrc 698 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘5))
154 bposlem9.5 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
155 breq2 4657 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑁 < 𝑝𝑁 < 𝑞))
156 breq1 4656 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑞 ≤ (2 · 𝑁)))
157155, 156anbi12d 747 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁))))
158157cbvrexv 3172 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
159154, 158sylnib 318 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
160 eqid 2622 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
161 eqid 2622 . . . . . . . . . 10 (⌊‘((2 · 𝑁) / 3)) = (⌊‘((2 · 𝑁) / 3))
162 eqid 2622 . . . . . . . . . 10 (⌊‘(√‘(2 · 𝑁))) = (⌊‘(√‘(2 · 𝑁)))
163153, 159, 160, 161, 162bposlem6 25014 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
164 reexplog 24341 . . . . . . . . . . . 12 ((4 ∈ ℝ+𝑁 ∈ ℤ) → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
165104, 136, 164sylancr 695 . . . . . . . . . . 11 (𝜑 → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
16661reeflogd 24370 . . . . . . . . . . . 12 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
167166eqcomd 2628 . . . . . . . . . . 11 (𝜑𝑁 = (exp‘(log‘𝑁)))
168165, 167oveq12d 6668 . . . . . . . . . 10 (𝜑 → ((4↑𝑁) / 𝑁) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
169108recnd 10068 . . . . . . . . . . 11 (𝜑 → (𝑁 · (log‘4)) ∈ ℂ)
170109recnd 10068 . . . . . . . . . . 11 (𝜑 → (log‘𝑁) ∈ ℂ)
171 efsub 14830 . . . . . . . . . . 11 (((𝑁 · (log‘4)) ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
172169, 170, 171syl2anc 693 . . . . . . . . . 10 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
173168, 172eqtr4d 2659 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) = (exp‘((𝑁 · (log‘4)) − (log‘𝑁))))
17495rpcnd 11874 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℂ)
17595rpne0d 11877 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ≠ 0)
176120recnd 10068 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℂ)
177174, 175, 176cxpefd 24458 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) = (exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))))
178 2cn 11091 . . . . . . . . . . . 12 2 ∈ ℂ
179 2ne0 11113 . . . . . . . . . . . 12 2 ≠ 0
180129recnd 10068 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℂ)
181 cxpef 24411 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ (((4 · 𝑁) / 3) − 5) ∈ ℂ) → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
182178, 179, 180, 181mp3an12i 1428 . . . . . . . . . . 11 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
183177, 182oveq12d 6668 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
184122recnd 10068 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ)
185131recnd 10068 . . . . . . . . . . 11 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ)
186 efadd 14824 . . . . . . . . . . 11 ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ ∧ ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ) → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
187184, 185, 186syl2anc 693 . . . . . . . . . 10 (𝜑 → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
188183, 187eqtr4d 2659 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
189163, 173, 1883brtr3d 4684 . . . . . . . 8 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
190 eflt 14847 . . . . . . . . 9 ((((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ ∧ (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ) → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
191110, 132, 190syl2anc 693 . . . . . . . 8 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
192189, 191mpbird 247 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))
193110, 132, 135, 192ltsub1dd 10639 . . . . . 6 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) < ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
19436recnd 10068 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
195 mulcom 10022 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) = (𝑁 · 2))
196178, 194, 195sylancr 695 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (𝑁 · 2))
197196oveq1d 6665 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · (log‘2)) = ((𝑁 · 2) · (log‘2)))
19893recni 10052 . . . . . . . . . . . 12 (log‘2) ∈ ℂ
199 mulass 10024 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ (log‘2) ∈ ℂ) → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
200178, 198, 199mp3an23 1416 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
201194, 200syl 17 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
2021982timesi 11147 . . . . . . . . . . . 12 (2 · (log‘2)) = ((log‘2) + (log‘2))
203 relogmul 24338 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(2 · 2)) = ((log‘2) + (log‘2)))
20491, 91, 203mp2an 708 . . . . . . . . . . . 12 (log‘(2 · 2)) = ((log‘2) + (log‘2))
205 2t2e4 11177 . . . . . . . . . . . . 13 (2 · 2) = 4
206205fveq2i 6194 . . . . . . . . . . . 12 (log‘(2 · 2)) = (log‘4)
207202, 204, 2063eqtr2i 2650 . . . . . . . . . . 11 (2 · (log‘2)) = (log‘4)
208207oveq2i 6661 . . . . . . . . . 10 (𝑁 · (2 · (log‘2))) = (𝑁 · (log‘4))
209201, 208syl6eq 2672 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (log‘4)))
210197, 209eqtrd 2656 . . . . . . . 8 (𝜑 → ((2 · 𝑁) · (log‘2)) = (𝑁 · (log‘4)))
211210oveq1d 6665 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
212 4p2e6 11162 . . . . . . . . . . . . . . 15 (4 + 2) = 6
213212oveq1i 6660 . . . . . . . . . . . . . 14 ((4 + 2) · 𝑁) = (6 · 𝑁)
214 4cn 11098 . . . . . . . . . . . . . . 15 4 ∈ ℂ
215 adddir 10031 . . . . . . . . . . . . . . 15 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
216214, 178, 194, 215mp3an12i 1428 . . . . . . . . . . . . . 14 (𝜑 → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
217213, 216syl5eqr 2670 . . . . . . . . . . . . 13 (𝜑 → (6 · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
218217oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → ((6 · 𝑁) / 3) = (((4 · 𝑁) + (2 · 𝑁)) / 3))
219 6cn 11102 . . . . . . . . . . . . . . 15 6 ∈ ℂ
220 3cn 11095 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
221 3ne0 11115 . . . . . . . . . . . . . . . 16 3 ≠ 0
222220, 221pm3.2i 471 . . . . . . . . . . . . . . 15 (3 ∈ ℂ ∧ 3 ≠ 0)
223 div23 10704 . . . . . . . . . . . . . . 15 ((6 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
224219, 222, 223mp3an13 1415 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
225194, 224syl 17 . . . . . . . . . . . . 13 (𝜑 → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
226 3t2e6 11179 . . . . . . . . . . . . . . . 16 (3 · 2) = 6
227226oveq1i 6660 . . . . . . . . . . . . . . 15 ((3 · 2) / 3) = (6 / 3)
228178, 220, 221divcan3i 10771 . . . . . . . . . . . . . . 15 ((3 · 2) / 3) = 2
229227, 228eqtr3i 2646 . . . . . . . . . . . . . 14 (6 / 3) = 2
230229oveq1i 6660 . . . . . . . . . . . . 13 ((6 / 3) · 𝑁) = (2 · 𝑁)
231225, 230syl6eq 2672 . . . . . . . . . . . 12 (𝜑 → ((6 · 𝑁) / 3) = (2 · 𝑁))
232124recnd 10068 . . . . . . . . . . . . 13 (𝜑 → (4 · 𝑁) ∈ ℂ)
233 remulcl 10021 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
234118, 36, 233sylancr 695 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) ∈ ℝ)
235234recnd 10068 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ∈ ℂ)
236 divdir 10710 . . . . . . . . . . . . . 14 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
237222, 236mp3an3 1413 . . . . . . . . . . . . 13 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
238232, 235, 237syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
239218, 231, 2383eqtr3d 2664 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
240239oveq1d 6665 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) − ((4 · 𝑁) / 3)) = ((((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)) − ((4 · 𝑁) / 3)))
241126recnd 10068 . . . . . . . . . . 11 (𝜑 → ((4 · 𝑁) / 3) ∈ ℂ)
242 3rp 11838 . . . . . . . . . . . . 13 3 ∈ ℝ+
243 rpdivcl 11856 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((2 · 𝑁) / 3) ∈ ℝ+)
24495, 242, 243sylancl 694 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ+)
245244rpcnd 11874 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 3) ∈ ℂ)
246241, 245pncan2d 10394 . . . . . . . . . 10 (𝜑 → ((((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)) − ((4 · 𝑁) / 3)) = ((2 · 𝑁) / 3))
247240, 246eqtrd 2656 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) − ((4 · 𝑁) / 3)) = ((2 · 𝑁) / 3))
248247oveq1d 6665 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) / 3) · (log‘2)))
249101recnd 10068 . . . . . . . . 9 (𝜑 → (log‘2) ∈ ℂ)
250235, 241, 249subdird 10487 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
251248, 250eqtr3d 2658 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
252134recnd 10068 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℂ)
253169, 252, 170nnncan2d 10427 . . . . . . 7 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
254211, 251, 2533eqtr4d 2666 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
255117recnd 10068 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℂ)
256178a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
257121recnd 10068 . . . . . . . . . 10 (𝜑 → (log‘(2 · 𝑁)) ∈ ℂ)
258255, 256, 257adddird 10065 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))))
259 relogmul 24338 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
26091, 61, 259sylancr 695 . . . . . . . . . . . 12 (𝜑 → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
261260oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (2 · (log‘(2 · 𝑁))) = (2 · ((log‘2) + (log‘𝑁))))
262256, 249, 170adddid 10064 . . . . . . . . . . 11 (𝜑 → (2 · ((log‘2) + (log‘𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
263261, 262eqtrd 2656 . . . . . . . . . 10 (𝜑 → (2 · (log‘(2 · 𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
264263oveq2d 6666 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
265258, 264eqtrd 2656 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
266 5cn 11100 . . . . . . . . . . . 12 5 ∈ ℂ
267266a1i 11 . . . . . . . . . . 11 (𝜑 → 5 ∈ ℂ)
268241, 267, 249subdird 10487 . . . . . . . . . 10 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) = ((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))))
269268oveq1d 6665 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
270266, 198mulcli 10045 . . . . . . . . . . 11 (5 · (log‘2)) ∈ ℂ
271270a1i 11 . . . . . . . . . 10 (𝜑 → (5 · (log‘2)) ∈ ℂ)
272252, 271, 170nnncan1d 10426 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
273269, 272eqtrd 2656 . . . . . . . 8 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
274265, 273oveq12d 6668 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
275135recnd 10068 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℂ)
276184, 185, 275addsubassd 10412 . . . . . . 7 (𝜑 → ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))))
277266, 220, 198subdiri 10480 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = ((5 · (log‘2)) − (3 · (log‘2)))
278 3p2e5 11160 . . . . . . . . . . . . . . . 16 (3 + 2) = 5
279278oveq1i 6660 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = (5 − 3)
280 pncan2 10288 . . . . . . . . . . . . . . . 16 ((3 ∈ ℂ ∧ 2 ∈ ℂ) → ((3 + 2) − 3) = 2)
281220, 178, 280mp2an 708 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = 2
282279, 281eqtr3i 2646 . . . . . . . . . . . . . 14 (5 − 3) = 2
283282oveq1i 6660 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = (2 · (log‘2))
284277, 283eqtr3i 2646 . . . . . . . . . . . 12 ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2))
285284a1i 11 . . . . . . . . . . 11 (𝜑 → ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2)))
286 df-3 11080 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
287286oveq1i 6660 . . . . . . . . . . . . . . 15 (3 · (log‘𝑁)) = ((2 + 1) · (log‘𝑁))
288 1cnd 10056 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
289256, 288, 170adddird 10065 . . . . . . . . . . . . . . 15 (𝜑 → ((2 + 1) · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
290287, 289syl5eq 2668 . . . . . . . . . . . . . 14 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
291170mulid2d 10058 . . . . . . . . . . . . . . 15 (𝜑 → (1 · (log‘𝑁)) = (log‘𝑁))
292291oveq2d 6666 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (log‘𝑁)) + (1 · (log‘𝑁))) = ((2 · (log‘𝑁)) + (log‘𝑁)))
293290, 292eqtrd 2656 . . . . . . . . . . . . 13 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (log‘𝑁)))
294293oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = (((2 · (log‘𝑁)) + (log‘𝑁)) − (5 · (log‘2))))
295 mulcl 10020 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (2 · (log‘𝑁)) ∈ ℂ)
296178, 170, 295sylancr 695 . . . . . . . . . . . . 13 (𝜑 → (2 · (log‘𝑁)) ∈ ℂ)
297296, 170, 271addsubassd 10412 . . . . . . . . . . . 12 (𝜑 → (((2 · (log‘𝑁)) + (log‘𝑁)) − (5 · (log‘2))) = ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2)))))
298294, 297eqtrd 2656 . . . . . . . . . . 11 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2)))))
299285, 298oveq12d 6668 . . . . . . . . . 10 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
300 relogdiv 24339 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
30161, 91, 300sylancl 694 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
302301oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘(𝑁 / 2))) = (3 · ((log‘𝑁) − (log‘2))))
303 subdi 10463 . . . . . . . . . . . . . 14 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
304220, 198, 303mp3an13 1415 . . . . . . . . . . . . 13 ((log‘𝑁) ∈ ℂ → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
305170, 304syl 17 . . . . . . . . . . . 12 (𝜑 → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
306302, 305eqtrd 2656 . . . . . . . . . . 11 (𝜑 → (3 · (log‘(𝑁 / 2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
307 div23 10704 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
308178, 222, 307mp3an13 1415 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
309194, 308syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
310220, 178, 220, 178, 179, 179divmuldivi 10785 . . . . . . . . . . . . . . . . 17 ((3 / 2) · (3 / 2)) = ((3 · 3) / (2 · 2))
311 3t3e9 11180 . . . . . . . . . . . . . . . . . 18 (3 · 3) = 9
312311, 205oveq12i 6662 . . . . . . . . . . . . . . . . 17 ((3 · 3) / (2 · 2)) = (9 / 4)
313310, 312eqtr2i 2645 . . . . . . . . . . . . . . . 16 (9 / 4) = ((3 / 2) · (3 / 2))
314313a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (9 / 4) = ((3 / 2) · (3 / 2)))
315309, 314oveq12d 6668 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))))
316178, 220, 221divcli 10767 . . . . . . . . . . . . . . 15 (2 / 3) ∈ ℂ
317220, 178, 179divcli 10767 . . . . . . . . . . . . . . . 16 (3 / 2) ∈ ℂ
318 mul4 10205 . . . . . . . . . . . . . . . 16 ((((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ ((3 / 2) ∈ ℂ ∧ (3 / 2) ∈ ℂ)) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
319317, 317, 318mpanr12 721 . . . . . . . . . . . . . . 15 (((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
320316, 194, 319sylancr 695 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
321 divcan6 10732 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 / 3) · (3 / 2)) = 1)
322178, 179, 220, 221, 321mp4an 709 . . . . . . . . . . . . . . . . 17 ((2 / 3) · (3 / 2)) = 1
323322oveq1i 6660 . . . . . . . . . . . . . . . 16 (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (1 · (𝑁 · (3 / 2)))
324 mulcl 10020 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ (3 / 2) ∈ ℂ) → (𝑁 · (3 / 2)) ∈ ℂ)
325194, 317, 324sylancl 694 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 · (3 / 2)) ∈ ℂ)
326325mulid2d 10058 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
327323, 326syl5eq 2668 . . . . . . . . . . . . . . 15 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
328 2cnne0 11242 . . . . . . . . . . . . . . . . 17 (2 ∈ ℂ ∧ 2 ≠ 0)
329 div12 10707 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
330220, 328, 329mp3an23 1416 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
331194, 330syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
332327, 331eqtrd 2656 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (3 · (𝑁 / 2)))
333315, 320, 3323eqtrd 2660 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (3 · (𝑁 / 2)))
334333, 84oveq12d 6668 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))))
33577recni 10052 . . . . . . . . . . . . . 14 (9 / 4) ∈ ℂ
336335a1i 11 . . . . . . . . . . . . 13 (𝜑 → (9 / 4) ∈ ℂ)
33787recnd 10068 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℂ)
338245, 336, 337mulassd 10063 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))
339220a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 3 ∈ ℂ)
34078rpcnd 11874 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 2) ∈ ℂ)
34185recnd 10068 . . . . . . . . . . . . . . 15 (𝜑 → (log‘(𝑁 / 2)) ∈ ℂ)
34278rpne0d 11877 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 2) ≠ 0)
343341, 340, 342divcld 10801 . . . . . . . . . . . . . 14 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℂ)
344339, 340, 343mulassd 10063 . . . . . . . . . . . . 13 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))))
345341, 340, 342divcan2d 10803 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (log‘(𝑁 / 2)))
346345oveq2d 6666 . . . . . . . . . . . . 13 (𝜑 → (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
347344, 346eqtrd 2656 . . . . . . . . . . . 12 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · (log‘(𝑁 / 2))))
348334, 338, 3473eqtr3d 2664 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
349220, 198mulcli 10045 . . . . . . . . . . . . 13 (3 · (log‘2)) ∈ ℂ
350349a1i 11 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘2)) ∈ ℂ)
351 mulcl 10020 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (3 · (log‘𝑁)) ∈ ℂ)
352220, 170, 351sylancr 695 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘𝑁)) ∈ ℂ)
353271, 350, 352npncan3d 10428 . . . . . . . . . . 11 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
354306, 348, 3533eqtr4d 2666 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))))
355118, 93remulcli 10054 . . . . . . . . . . . . 13 (2 · (log‘2)) ∈ ℝ
356355recni 10052 . . . . . . . . . . . 12 (2 · (log‘2)) ∈ ℂ
357356a1i 11 . . . . . . . . . . 11 (𝜑 → (2 · (log‘2)) ∈ ℂ)
358 subcl 10280 . . . . . . . . . . . 12 (((log‘𝑁) ∈ ℂ ∧ (5 · (log‘2)) ∈ ℂ) → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
359170, 270, 358sylancl 694 . . . . . . . . . . 11 (𝜑 → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
360357, 296, 359addassd 10062 . . . . . . . . . 10 (𝜑 → (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
361299, 354, 3603eqtr4d 2666 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))))
362361oveq2d 6666 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
363 mulcl 10020 . . . . . . . . . . 11 ((((√‘(2 · 𝑁)) / 3) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
364255, 198, 363sylancl 694 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
365255, 170mulcld 10060 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) ∈ ℂ)
36689recnd 10068 . . . . . . . . . . 11 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℂ)
367245, 366mulcld 10060 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
368364, 365, 367addassd 10062 . . . . . . . . 9 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
369260oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))))
370255, 249, 170adddid 10064 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
371369, 370eqtrd 2656 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
372371oveq1d 6665 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
37359oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))))
37490recnd 10068 . . . . . . . . . . . 12 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
37598recnd 10068 . . . . . . . . . . . 12 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℂ)
376245, 374, 375adddid 10064 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
377373, 376eqtrd 2656 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
37873recnd 10068 . . . . . . . . . . . . 13 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℂ)
379245, 378, 366adddid 10064 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
38095rpge0d 11876 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (2 · 𝑁))
381 remsqsqrt 13997 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
382234, 380, 381syl2anc 693 . . . . . . . . . . . . . . . . 17 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
383382oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = ((2 · 𝑁) / 3))
384114recnd 10068 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) ∈ ℂ)
385221a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
386384, 384, 339, 385div23d 10838 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
387383, 386eqtr3d 2658 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
388387oveq1d 6665 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))))
389255, 384, 378mulassd 10063 . . . . . . . . . . . . . 14 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))))
390 0le2 11111 . . . . . . . . . . . . . . . . . . 19 0 ≤ 2
391118, 390pm3.2i 471 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℝ ∧ 0 ≤ 2)
39261rprege0d 11879 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
393 sqrtmul 14000 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
394391, 392, 393sylancr 695 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
395394oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))))
39660recni 10052 . . . . . . . . . . . . . . . . . 18 (√‘2) ∈ ℂ
397396a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘2) ∈ ℂ)
39862rpcnd 11874 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘𝑁) ∈ ℂ)
39971recnd 10068 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℂ)
400397, 398, 397, 399mul4d 10248 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))))
401 remsqsqrt 13997 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
402118, 390, 401mp2an 708 . . . . . . . . . . . . . . . . . . 19 ((√‘2) · (√‘2)) = 2
403402a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘2) · (√‘2)) = 2)
40468oveq2d 6666 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))))
40569recnd 10068 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (log‘(√‘𝑁)) ∈ ℂ)
40662rpne0d 11877 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑁) ≠ 0)
407405, 398, 406divcan2d 10803 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))) = (log‘(√‘𝑁)))
408404, 407eqtrd 2656 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = (log‘(√‘𝑁)))
409403, 408oveq12d 6668 . . . . . . . . . . . . . . . . 17 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (2 · (log‘(√‘𝑁))))
4104052timesd 11275 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (log‘(√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
41162, 62relogmuld 24371 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
412 remsqsqrt 13997 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
413392, 412syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
414413fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = (log‘𝑁))
415411, 414eqtr3d 2658 . . . . . . . . . . . . . . . . 17 (𝜑 → ((log‘(√‘𝑁)) + (log‘(√‘𝑁))) = (log‘𝑁))
416409, 410, 4153eqtrd 2660 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
417395, 400, 4163eqtrd 2660 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
418417oveq2d 6666 . . . . . . . . . . . . . 14 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
419388, 389, 4183eqtrd 2660 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
420419oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
421379, 420eqtrd 2656 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
422387oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))))
423255, 384, 375mulassd 10063 . . . . . . . . . . . 12 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))))
42496rpne0d 11877 . . . . . . . . . . . . . 14 (𝜑 → (√‘(2 · 𝑁)) ≠ 0)
425249, 384, 424divcan2d 10803 . . . . . . . . . . . . 13 (𝜑 → ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁)))) = (log‘2))
426425oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
427422, 423, 4263eqtrd 2660 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
428421, 427oveq12d 6668 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))))
429365, 367addcld 10059 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) ∈ ℂ)
430429, 364addcomd 10238 . . . . . . . . . 10 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
431377, 428, 4303eqtrd 2660 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
432368, 372, 4313eqtr4rd 2667 . . . . . . . 8 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
433255, 257mulcld 10060 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) ∈ ℂ)
434 addcl 10018 . . . . . . . . . 10 (((2 · (log‘2)) ∈ ℂ ∧ (2 · (log‘𝑁)) ∈ ℂ) → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
435356, 296, 434sylancr 695 . . . . . . . . 9 (𝜑 → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
436433, 435, 359addassd 10062 . . . . . . . 8 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
437362, 432, 4363eqtr4d 2666 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
438274, 276, 4373eqtr4rd 2667 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
439193, 254, 4383brtr4d 4685 . . . . 5 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁)))
440101, 100, 244ltmul2d 11914 . . . . 5 (𝜑 → ((log‘2) < (𝐹𝑁) ↔ (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁))))
441439, 440mpbird 247 . . . 4 (𝜑 → (log‘2) < (𝐹𝑁))
44245, 101, 100, 102, 441lttrd 10198 . . 3 (𝜑 → (𝐹64) < (𝐹𝑁))
44345, 100, 442ltnsymd 10186 . 2 (𝜑 → ¬ (𝐹𝑁) < (𝐹64))
44442, 443pm2.21dd 186 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  6c6 11074  8c8 11076  9c9 11077  cz 11377  cdc 11493  cuz 11687  +crp 11832  cfl 12591  cexp 12860  Ccbc 13089  csqrt 13973  expce 14792  eceu 14793  cprime 15385   pCnt cpc 15541  logclog 24301  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-cht 24823  df-ppi 24826
This theorem is referenced by:  bpos  25018
  Copyright terms: Public domain W3C validator