| Step | Hyp | Ref
| Expression |
| 1 | | pgpfac1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) |
| 2 | 1 | eldifbd 3587 |
. . 3
⊢ (𝜑 → ¬ 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
| 3 | | pgpfac1.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
| 4 | | pgpprm 18008 |
. . . . . . . 8
⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 6 | | pgpfac1.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 7 | | ablgrp 18198 |
. . . . . . . . 9
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 9 | | pgpfac1.n |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 10 | | pgpfac1.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
| 11 | | pgpfac1.e |
. . . . . . . . 9
⊢ 𝐸 = (gEx‘𝐺) |
| 12 | 10, 11 | gexcl2 18004 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈
ℕ) |
| 13 | 8, 9, 12 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ ℕ) |
| 14 | | pceq0 15575 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃 ∥ 𝐸)) |
| 15 | 5, 13, 14 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃 ∥ 𝐸)) |
| 16 | | oveq2 6658 |
. . . . . 6
⊢ ((𝑃 pCnt 𝐸) = 0 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0)) |
| 17 | 15, 16 | syl6bir 244 |
. . . . 5
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0))) |
| 18 | 10 | grpbn0 17451 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| 19 | 8, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 20 | | hashnncl 13157 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin →
((#‘𝐵) ∈ ℕ
↔ 𝐵 ≠
∅)) |
| 21 | 9, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((#‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
| 22 | 19, 21 | mpbird 247 |
. . . . . . . . . . 11
⊢ (𝜑 → (#‘𝐵) ∈ ℕ) |
| 23 | 5, 22 | pccld 15555 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 pCnt (#‘𝐵)) ∈
ℕ0) |
| 24 | 10, 11 | gexdvds3 18005 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (#‘𝐵)) |
| 25 | 8, 9, 24 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∥ (#‘𝐵)) |
| 26 | 10 | pgphash 18022 |
. . . . . . . . . . . 12
⊢ ((𝑃 pGrp 𝐺 ∧ 𝐵 ∈ Fin) → (#‘𝐵) = (𝑃↑(𝑃 pCnt (#‘𝐵)))) |
| 27 | 3, 9, 26 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → (#‘𝐵) = (𝑃↑(𝑃 pCnt (#‘𝐵)))) |
| 28 | 25, 27 | breqtrd 4679 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∥ (𝑃↑(𝑃 pCnt (#‘𝐵)))) |
| 29 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑃 pCnt (#‘𝐵)) → (𝑃↑𝑘) = (𝑃↑(𝑃 pCnt (#‘𝐵)))) |
| 30 | 29 | breq2d 4665 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑃 pCnt (#‘𝐵)) → (𝐸 ∥ (𝑃↑𝑘) ↔ 𝐸 ∥ (𝑃↑(𝑃 pCnt (#‘𝐵))))) |
| 31 | 30 | rspcev 3309 |
. . . . . . . . . 10
⊢ (((𝑃 pCnt (#‘𝐵)) ∈ ℕ0 ∧ 𝐸 ∥ (𝑃↑(𝑃 pCnt (#‘𝐵)))) → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘)) |
| 32 | 23, 28, 31 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘)) |
| 33 | | pcprmpw2 15586 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) →
(∃𝑘 ∈
ℕ0 𝐸
∥ (𝑃↑𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))) |
| 34 | 5, 13, 33 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))) |
| 35 | 32, 34 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))) |
| 36 | 35 | eqcomd 2628 |
. . . . . . 7
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝐸)) = 𝐸) |
| 37 | | prmnn 15388 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 38 | 5, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 39 | 38 | nncnd 11036 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 40 | 39 | exp0d 13002 |
. . . . . . 7
⊢ (𝜑 → (𝑃↑0) = 1) |
| 41 | 36, 40 | eqeq12d 2637 |
. . . . . 6
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐸 = 1)) |
| 42 | | grpmnd 17429 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 43 | 8, 42 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 44 | 10, 11 | gex1 18006 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝐵 ≈
1𝑜)) |
| 45 | 43, 44 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐸 = 1 ↔ 𝐵 ≈
1𝑜)) |
| 46 | 41, 45 | bitrd 268 |
. . . . 5
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐵 ≈
1𝑜)) |
| 47 | 17, 46 | sylibd 229 |
. . . 4
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → 𝐵 ≈
1𝑜)) |
| 48 | | pgpfac1.s |
. . . . . . . . . . 11
⊢ 𝑆 = (𝐾‘{𝐴}) |
| 49 | 10 | subgacs 17629 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝐵)) |
| 50 | 8, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
| 51 | 50 | acsmred 16317 |
. . . . . . . . . . . 12
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵)) |
| 52 | | pgpfac1.u |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| 53 | 10 | subgss 17595 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| 55 | | pgpfac1.au |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| 56 | 54, 55 | sseldd 3604 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 57 | | pgpfac1.k |
. . . . . . . . . . . . 13
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
| 58 | 57 | mrcsncl 16272 |
. . . . . . . . . . . 12
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝐵)
∧ 𝐴 ∈ 𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 59 | 51, 56, 58 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 60 | 48, 59 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| 61 | | pgpfac1.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
| 62 | | pgpfac1.l |
. . . . . . . . . . 11
⊢ ⊕ =
(LSSum‘𝐺) |
| 63 | 62 | lsmsubg2 18262 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
| 64 | 6, 60, 61, 63 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
| 65 | | pgpfac1.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐺) |
| 66 | 65 | subg0cl 17602 |
. . . . . . . . 9
⊢ ((𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆 ⊕ 𝑊)) |
| 67 | 64, 66 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (𝑆 ⊕ 𝑊)) |
| 68 | 67 | snssd 4340 |
. . . . . . 7
⊢ (𝜑 → { 0 } ⊆ (𝑆 ⊕ 𝑊)) |
| 69 | 68 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≈ 1𝑜) → {
0 }
⊆ (𝑆 ⊕ 𝑊)) |
| 70 | 1 | eldifad 3586 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| 71 | 54, 70 | sseldd 3604 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 72 | 71 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≈ 1𝑜) → 𝐶 ∈ 𝐵) |
| 73 | 10, 65 | grpidcl 17450 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 74 | 8, 73 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ 𝐵) |
| 75 | | en1eqsn 8190 |
. . . . . . . 8
⊢ (( 0 ∈ 𝐵 ∧ 𝐵 ≈ 1𝑜) → 𝐵 = { 0 }) |
| 76 | 74, 75 | sylan 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≈ 1𝑜) → 𝐵 = { 0 }) |
| 77 | 72, 76 | eleqtrd 2703 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≈ 1𝑜) → 𝐶 ∈ { 0 }) |
| 78 | 69, 77 | sseldd 3604 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≈ 1𝑜) → 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
| 79 | 78 | ex 450 |
. . . 4
⊢ (𝜑 → (𝐵 ≈ 1𝑜 → 𝐶 ∈ (𝑆 ⊕ 𝑊))) |
| 80 | 47, 79 | syld 47 |
. . 3
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → 𝐶 ∈ (𝑆 ⊕ 𝑊))) |
| 81 | 2, 80 | mt3d 140 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝐸) |
| 82 | | pgpfac1.oe |
. . . . 5
⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) |
| 83 | 13 | nncnd 11036 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 84 | 38 | nnne0d 11065 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≠ 0) |
| 85 | 83, 39, 84 | divcan1d 10802 |
. . . . 5
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑃) = 𝐸) |
| 86 | 82, 85 | eqtr4d 2659 |
. . . 4
⊢ (𝜑 → (𝑂‘𝐴) = ((𝐸 / 𝑃) · 𝑃)) |
| 87 | | nndivdvds 14989 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ)) |
| 88 | 13, 38, 87 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 ∥ 𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ)) |
| 89 | 81, 88 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / 𝑃) ∈ ℕ) |
| 90 | 89 | nnzd 11481 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 / 𝑃) ∈ ℤ) |
| 91 | | pgpfac1.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 92 | 90, 91 | zmulcld 11488 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) |
| 93 | 56 | snssd 4340 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| 94 | 51, 57, 93 | mrcssidd 16285 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴})) |
| 95 | 94, 48 | syl6sseqr 3652 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐴} ⊆ 𝑆) |
| 96 | | snssg 4327 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑈 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
| 97 | 55, 96 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
| 98 | 95, 97 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 99 | | pgpfac1.mg |
. . . . . . . . . 10
⊢ · =
(.g‘𝐺) |
| 100 | 99 | subgmulgcl 17607 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ ∧ 𝐴 ∈ 𝑆) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆) |
| 101 | 60, 92, 98, 100 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆) |
| 102 | | prmz 15389 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 103 | 5, 102 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 104 | 10, 99 | mulgcl 17559 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵) → (𝑃 · 𝐶) ∈ 𝐵) |
| 105 | 8, 103, 71, 104 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 · 𝐶) ∈ 𝐵) |
| 106 | 10, 99 | mulgcl 17559 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵) → (𝑀 · 𝐴) ∈ 𝐵) |
| 107 | 8, 91, 56, 106 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 · 𝐴) ∈ 𝐵) |
| 108 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 109 | 10, 99, 108 | mulgdi 18232 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵 ∧ (𝑀 · 𝐴) ∈ 𝐵)) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
| 110 | 6, 90, 105, 107, 109 | syl13anc 1328 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
| 111 | 85 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = (𝐸 · 𝐶)) |
| 112 | 10, 99 | mulgass 17579 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵)) → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
| 113 | 8, 90, 103, 71, 112 | syl13anc 1328 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
| 114 | 10, 11, 99, 65 | gexid 17996 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐵 → (𝐸 · 𝐶) = 0 ) |
| 115 | 71, 114 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 · 𝐶) = 0 ) |
| 116 | 111, 113,
115 | 3eqtr3rd 2665 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
| 117 | 10, 99 | mulgass 17579 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵)) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴))) |
| 118 | 8, 90, 91, 56, 117 | syl13anc 1328 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴))) |
| 119 | 116, 118 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
| 120 | 10 | subgss 17595 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| 121 | 60, 120 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 122 | 121, 101 | sseldd 3604 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) |
| 123 | 10, 108, 65 | grplid 17452 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
| 124 | 8, 122, 123 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
| 125 | 110, 119,
124 | 3eqtr2d 2662 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
| 126 | | pgpfac1.mw |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) |
| 127 | 99 | subgmulgcl 17607 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐸 / 𝑃) ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) ∈ 𝑊) |
| 128 | 61, 90, 126, 127 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) ∈ 𝑊) |
| 129 | 125, 128 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑊) |
| 130 | 101, 129 | elind 3798 |
. . . . . . 7
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ (𝑆 ∩ 𝑊)) |
| 131 | | pgpfac1.i |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) |
| 132 | 130, 131 | eleqtrd 2703 |
. . . . . 6
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 }) |
| 133 | | elsni 4194 |
. . . . . 6
⊢ ((((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 } → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ) |
| 134 | 132, 133 | syl 17 |
. . . . 5
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ) |
| 135 | | pgpfac1.o |
. . . . . . 7
⊢ 𝑂 = (od‘𝐺) |
| 136 | 10, 135, 99, 65 | oddvds 17966 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) → ((𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )) |
| 137 | 8, 56, 92, 136 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → ((𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )) |
| 138 | 134, 137 | mpbird 247 |
. . . 4
⊢ (𝜑 → (𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀)) |
| 139 | 86, 138 | eqbrtrrd 4677 |
. . 3
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀)) |
| 140 | 89 | nnne0d 11065 |
. . . 4
⊢ (𝜑 → (𝐸 / 𝑃) ≠ 0) |
| 141 | | dvdscmulr 15010 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝐸 / 𝑃) ≠ 0)) → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃 ∥ 𝑀)) |
| 142 | 103, 91, 90, 140, 141 | syl112anc 1330 |
. . 3
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃 ∥ 𝑀)) |
| 143 | 139, 142 | mpbid 222 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝑀) |
| 144 | 81, 143 | jca 554 |
1
⊢ (𝜑 → (𝑃 ∥ 𝐸 ∧ 𝑃 ∥ 𝑀)) |