MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridm Structured version   Visualization version   Unicode version

Theorem psrridm 19404
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s  |-  S  =  ( I mPwSer  R )
psrring.i  |-  ( ph  ->  I  e.  V )
psrring.r  |-  ( ph  ->  R  e.  Ring )
psr1cl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psr1cl.z  |-  .0.  =  ( 0g `  R )
psr1cl.o  |-  .1.  =  ( 1r `  R )
psr1cl.u  |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
psr1cl.b  |-  B  =  ( Base `  S
)
psrlidm.t  |-  .x.  =  ( .r `  S )
psrlidm.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
psrridm  |-  ( ph  ->  ( X  .x.  U
)  =  X )
Distinct variable groups:    x, f,  .0.    f, I, x    x, B    R, f, x    x, D    f, X, x    ph, x    x, V    x,  .x.    x, S   
x,  .1.
Allowed substitution hints:    ph( f)    B( f)    D( f)    S( f)    .x. ( f)    U( x, f)    .1. ( f)    V( f)

Proof of Theorem psrridm
Dummy variables  y 
z  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4  |-  S  =  ( I mPwSer  R )
2 eqid 2622 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
3 psr1cl.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
4 psr1cl.b . . . 4  |-  B  =  ( Base `  S
)
5 psrlidm.t . . . . 5  |-  .x.  =  ( .r `  S )
6 psrring.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
7 psrlidm.x . . . . 5  |-  ( ph  ->  X  e.  B )
8 psrring.i . . . . . 6  |-  ( ph  ->  I  e.  V )
9 psr1cl.z . . . . . 6  |-  .0.  =  ( 0g `  R )
10 psr1cl.o . . . . . 6  |-  .1.  =  ( 1r `  R )
11 psr1cl.u . . . . . 6  |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
121, 8, 6, 3, 9, 10, 11, 4psr1cl 19402 . . . . 5  |-  ( ph  ->  U  e.  B )
131, 4, 5, 6, 7, 12psrmulcl 19388 . . . 4  |-  ( ph  ->  ( X  .x.  U
)  e.  B )
141, 2, 3, 4, 13psrelbas 19379 . . 3  |-  ( ph  ->  ( X  .x.  U
) : D --> ( Base `  R ) )
1514ffnd 6046 . 2  |-  ( ph  ->  ( X  .x.  U
)  Fn  D )
161, 2, 3, 4, 7psrelbas 19379 . . 3  |-  ( ph  ->  X : D --> ( Base `  R ) )
1716ffnd 6046 . 2  |-  ( ph  ->  X  Fn  D )
18 eqid 2622 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
197adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  X  e.  B )
2012adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  U  e.  B )
21 simpr 477 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  y  e.  D )
221, 4, 18, 5, 3, 19, 20, 21psrmulval 19386 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  (
( X  .x.  U
) `  y )  =  ( R  gsumg  ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `  z ) ( .r
`  R ) ( U `  ( y  oF  -  z
) ) ) ) ) )
238adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  I  e.  V )
243psrbagf 19365 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  y  e.  D )  ->  y : I --> NN0 )
258, 24sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  y : I --> NN0 )
26 nn0re 11301 . . . . . . . . . . 11  |-  ( z  e.  NN0  ->  z  e.  RR )
2726leidd 10594 . . . . . . . . . 10  |-  ( z  e.  NN0  ->  z  <_ 
z )
2827adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  NN0 )  ->  z  <_  z )
2923, 25, 28caofref 6923 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  y  oR  <_  y )
30 breq1 4656 . . . . . . . . 9  |-  ( g  =  y  ->  (
g  oR  <_ 
y  <->  y  oR  <_  y ) )
3130elrab 3363 . . . . . . . 8  |-  ( y  e.  { g  e.  D  |  g  oR  <_  y }  <->  ( y  e.  D  /\  y  oR  <_  y
) )
3221, 29, 31sylanbrc 698 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  y  e.  { g  e.  D  |  g  oR 
<_  y } )
3332snssd 4340 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  { y }  C_  { g  e.  D  |  g  oR  <_  y } )
3433resmptd 5452 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )  |`  { y } )  =  ( z  e.  { y }  |->  ( ( X `
 z ) ( .r `  R ) ( U `  (
y  oF  -  z ) ) ) ) )
3534oveq2d 6666 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )  |`  { y } ) )  =  ( R  gsumg  ( z  e.  {
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) ) )
36 ringcmn 18581 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
376, 36syl 17 . . . . . 6  |-  ( ph  ->  R  e. CMnd )
3837adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  R  e. CMnd )
39 ovex 6678 . . . . . . 7  |-  ( NN0 
^m  I )  e. 
_V
403, 39rab2ex 4816 . . . . . 6  |-  { g  e.  D  |  g  oR  <_  y }  e.  _V
4140a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  { g  e.  D  |  g  oR  <_  y }  e.  _V )
426ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  R  e.  Ring )
4316ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  X : D --> ( Base `  R ) )
44 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z  e.  { g  e.  D  |  g  oR  <_  y } )
45 breq1 4656 . . . . . . . . . . 11  |-  ( g  =  z  ->  (
g  oR  <_ 
y  <->  z  oR  <_  y ) )
4645elrab 3363 . . . . . . . . . 10  |-  ( z  e.  { g  e.  D  |  g  oR  <_  y }  <->  ( z  e.  D  /\  z  oR  <_  y
) )
4744, 46sylib 208 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( z  e.  D  /\  z  oR 
<_  y ) )
4847simpld 475 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z  e.  D )
4943, 48ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( X `  z
)  e.  ( Base `  R ) )
501, 2, 3, 4, 20psrelbas 19379 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  U : D --> ( Base `  R
) )
5150adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  U : D --> ( Base `  R ) )
528ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  I  e.  V )
5321adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
y  e.  D )
543psrbagf 19365 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  z  e.  D )  ->  z : I --> NN0 )
5552, 48, 54syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z : I --> NN0 )
5647simprd 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z  oR  <_ 
y )
573psrbagcon 19371 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e.  D  /\  z : I --> NN0  /\  z  oR  <_  y
) )  ->  (
( y  oF  -  z )  e.  D  /\  ( y  oF  -  z
)  oR  <_ 
y ) )
5852, 53, 55, 56, 57syl13anc 1328 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( y  oF  -  z )  e.  D  /\  (
y  oF  -  z )  oR  <_  y ) )
5958simpld 475 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( y  oF  -  z )  e.  D )
6051, 59ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( U `  (
y  oF  -  z ) )  e.  ( Base `  R
) )
612, 18ringcl 18561 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X `  z )  e.  ( Base `  R
)  /\  ( U `  ( y  oF  -  z ) )  e.  ( Base `  R
) )  ->  (
( X `  z
) ( .r `  R ) ( U `
 ( y  oF  -  z ) ) )  e.  (
Base `  R )
)
6242, 49, 60, 61syl3anc 1326 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( X `  z ) ( .r
`  R ) ( U `  ( y  oF  -  z
) ) )  e.  ( Base `  R
) )
63 eqid 2622 . . . . . 6  |-  ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `  z ) ( .r
`  R ) ( U `  ( y  oF  -  z
) ) ) )  =  ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )
6462, 63fmptd 6385 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `
 z ) ( .r `  R ) ( U `  (
y  oF  -  z ) ) ) ) : { g  e.  D  |  g  oR  <_  y }
--> ( Base `  R
) )
65 eldifi 3732 . . . . . . . . . . 11  |-  ( z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } )  ->  z  e.  { g  e.  D  | 
g  oR  <_ 
y } )
6665, 59sylan2 491 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( y  oF  -  z
)  e.  D )
67 eqeq1 2626 . . . . . . . . . . . 12  |-  ( x  =  ( y  oF  -  z )  ->  ( x  =  ( I  X.  {
0 } )  <->  ( y  oF  -  z
)  =  ( I  X.  { 0 } ) ) )
6867ifbid 4108 . . . . . . . . . . 11  |-  ( x  =  ( y  oF  -  z )  ->  if ( x  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  )  =  if (
( y  oF  -  z )  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
69 fvex 6201 . . . . . . . . . . . . 13  |-  ( 1r
`  R )  e. 
_V
7010, 69eqeltri 2697 . . . . . . . . . . . 12  |-  .1.  e.  _V
71 fvex 6201 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  e. 
_V
729, 71eqeltri 2697 . . . . . . . . . . . 12  |-  .0.  e.  _V
7370, 72ifex 4156 . . . . . . . . . . 11  |-  if ( ( y  oF  -  z )  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )  e.  _V
7468, 11, 73fvmpt 6282 . . . . . . . . . 10  |-  ( ( y  oF  -  z )  e.  D  ->  ( U `  (
y  oF  -  z ) )  =  if ( ( y  oF  -  z
)  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )
7566, 74syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( U `  ( y  oF  -  z ) )  =  if ( ( y  oF  -  z )  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )
76 eldifsni 4320 . . . . . . . . . . . . 13  |-  ( z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } )  ->  z  =/=  y )
7776adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  z  =/=  y )
7877necomd 2849 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  y  =/=  z )
79 nn0sscn 11297 . . . . . . . . . . . . . . . 16  |-  NN0  C_  CC
80 fss 6056 . . . . . . . . . . . . . . . 16  |-  ( ( y : I --> NN0  /\  NN0  C_  CC )  ->  y : I --> CC )
8125, 79, 80sylancl 694 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  D )  ->  y : I --> CC )
8281adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
y : I --> CC )
83 fss 6056 . . . . . . . . . . . . . . 15  |-  ( ( z : I --> NN0  /\  NN0  C_  CC )  ->  z : I --> CC )
8455, 79, 83sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z : I --> CC )
85 ofsubeq0 11017 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  y : I --> CC  /\  z : I --> CC )  ->  ( ( y  oF  -  z
)  =  ( I  X.  { 0 } )  <->  y  =  z ) )
8652, 82, 84, 85syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( y  oF  -  z )  =  ( I  X.  { 0 } )  <-> 
y  =  z ) )
8765, 86sylan2 491 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( (
y  oF  -  z )  =  ( I  X.  { 0 } )  <->  y  =  z ) )
8887necon3bbid 2831 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( -.  ( y  oF  -  z )  =  ( I  X.  {
0 } )  <->  y  =/=  z ) )
8978, 88mpbird 247 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  -.  (
y  oF  -  z )  =  ( I  X.  { 0 } ) )
9089iffalsed 4097 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  if (
( y  oF  -  z )  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )  =  .0.  )
9175, 90eqtrd 2656 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( U `  ( y  oF  -  z ) )  =  .0.  )
9291oveq2d 6666 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( ( X `  z )
( .r `  R
) ( U `  ( y  oF  -  z ) ) )  =  ( ( X `  z ) ( .r `  R
)  .0.  ) )
932, 18, 9ringrz 18588 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( X `  z )  e.  ( Base `  R
) )  ->  (
( X `  z
) ( .r `  R )  .0.  )  =  .0.  )
9442, 49, 93syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( X `  z ) ( .r
`  R )  .0.  )  =  .0.  )
9565, 94sylan2 491 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( ( X `  z )
( .r `  R
)  .0.  )  =  .0.  )
9692, 95eqtrd 2656 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( ( X `  z )
( .r `  R
) ( U `  ( y  oF  -  z ) ) )  =  .0.  )
9796, 41suppss2 7329 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) supp  .0.  )  C_ 
{ y } )
98 mptexg 6484 . . . . . . 7  |-  ( { g  e.  D  | 
g  oR  <_ 
y }  e.  _V  ->  ( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )  e.  _V )
9941, 98syl 17 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  (
z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `
 z ) ( .r `  R ) ( U `  (
y  oF  -  z ) ) ) )  e.  _V )
100 funmpt 5926 . . . . . . 7  |-  Fun  (
z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `
 z ) ( .r `  R ) ( U `  (
y  oF  -  z ) ) ) )
101100a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  Fun  ( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) )
10272a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  .0.  e.  _V )
103 snfi 8038 . . . . . . 7  |-  { y }  e.  Fin
104103a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  { y }  e.  Fin )
105 suppssfifsupp 8290 . . . . . 6  |-  ( ( ( ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )  e.  _V  /\ 
Fun  ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )  /\  .0.  e.  _V )  /\  ( { y }  e.  Fin  /\  ( ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `  z ) ( .r
`  R ) ( U `  ( y  oF  -  z
) ) ) ) supp 
.0.  )  C_  { y } ) )  -> 
( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) finSupp  .0.  )
10699, 101, 102, 104, 97, 105syl32anc 1334 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `
 z ) ( .r `  R ) ( U `  (
y  oF  -  z ) ) ) ) finSupp  .0.  )
1072, 9, 38, 41, 64, 97, 106gsumres 18314 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )  |`  { y } ) )  =  ( R  gsumg  ( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) ) )
1086adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  R  e.  Ring )
109 ringmnd 18556 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
110108, 109syl 17 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  R  e.  Mnd )
111 eqid 2622 . . . . . . . . . . 11  |-  y  =  y
112 ofsubeq0 11017 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  y : I --> CC  /\  y : I --> CC )  ->  ( ( y  oF  -  y
)  =  ( I  X.  { 0 } )  <->  y  =  y ) )
11323, 81, 81, 112syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  D )  ->  (
( y  oF  -  y )  =  ( I  X.  {
0 } )  <->  y  =  y ) )
114111, 113mpbiri 248 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  D )  ->  (
y  oF  -  y )  =  ( I  X.  { 0 } ) )
115114fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  ( U `  ( y  oF  -  y
) )  =  ( U `  ( I  X.  { 0 } ) ) )
116 fconstmpt 5163 . . . . . . . . . . . 12  |-  ( I  X.  { 0 } )  =  ( w  e.  I  |->  0 )
1173fczpsrbag 19367 . . . . . . . . . . . . 13  |-  ( I  e.  V  ->  (
w  e.  I  |->  0 )  e.  D )
1188, 117syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( w  e.  I  |->  0 )  e.  D
)
119116, 118syl5eqel 2705 . . . . . . . . . . 11  |-  ( ph  ->  ( I  X.  {
0 } )  e.  D )
120119adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  D )  ->  (
I  X.  { 0 } )  e.  D
)
121 iftrue 4092 . . . . . . . . . . 11  |-  ( x  =  ( I  X.  { 0 } )  ->  if ( x  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  )  =  .1.  )
122121, 11, 70fvmpt 6282 . . . . . . . . . 10  |-  ( ( I  X.  { 0 } )  e.  D  ->  ( U `  (
I  X.  { 0 } ) )  =  .1.  )
123120, 122syl 17 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  ( U `  ( I  X.  { 0 } ) )  =  .1.  )
124115, 123eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  ( U `  ( y  oF  -  y
) )  =  .1.  )
125124oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  (
( X `  y
) ( .r `  R ) ( U `
 ( y  oF  -  y ) ) )  =  ( ( X `  y
) ( .r `  R )  .1.  )
)
12616ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  ( X `  y )  e.  ( Base `  R
) )
1272, 18, 10ringridm 18572 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X `  y )  e.  ( Base `  R
) )  ->  (
( X `  y
) ( .r `  R )  .1.  )  =  ( X `  y ) )
128108, 126, 127syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  (
( X `  y
) ( .r `  R )  .1.  )  =  ( X `  y ) )
129125, 128eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  (
( X `  y
) ( .r `  R ) ( U `
 ( y  oF  -  y ) ) )  =  ( X `  y ) )
130129, 126eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( X `  y
) ( .r `  R ) ( U `
 ( y  oF  -  y ) ) )  e.  (
Base `  R )
)
131 fveq2 6191 . . . . . . 7  |-  ( z  =  y  ->  ( X `  z )  =  ( X `  y ) )
132 oveq2 6658 . . . . . . . 8  |-  ( z  =  y  ->  (
y  oF  -  z )  =  ( y  oF  -  y ) )
133132fveq2d 6195 . . . . . . 7  |-  ( z  =  y  ->  ( U `  ( y  oF  -  z
) )  =  ( U `  ( y  oF  -  y
) ) )
134131, 133oveq12d 6668 . . . . . 6  |-  ( z  =  y  ->  (
( X `  z
) ( .r `  R ) ( U `
 ( y  oF  -  z ) ) )  =  ( ( X `  y
) ( .r `  R ) ( U `
 ( y  oF  -  y ) ) ) )
1352, 134gsumsn 18354 . . . . 5  |-  ( ( R  e.  Mnd  /\  y  e.  D  /\  ( ( X `  y ) ( .r
`  R ) ( U `  ( y  oF  -  y
) ) )  e.  ( Base `  R
) )  ->  ( R  gsumg  ( z  e.  {
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) )  =  ( ( X `  y ) ( .r
`  R ) ( U `  ( y  oF  -  y
) ) ) )
136110, 21, 130, 135syl3anc 1326 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( z  e.  {
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) )  =  ( ( X `  y ) ( .r
`  R ) ( U `  ( y  oF  -  y
) ) ) )
13735, 107, 1363eqtr3d 2664 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) )  =  ( ( X `  y ) ( .r
`  R ) ( U `  ( y  oF  -  y
) ) ) )
13822, 137, 1293eqtrd 2660 . 2  |-  ( (
ph  /\  y  e.  D )  ->  (
( X  .x.  U
) `  y )  =  ( X `  y ) )
13915, 17, 138eqfnfvd 6314 1  |-  ( ph  ->  ( X  .x.  U
)  =  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896   supp csupp 7295    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   CCcc 9934   0cc0 9936    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   Basecbs 15857   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  CMndccmn 18193   1rcur 18501   Ringcrg 18547   mPwSer cmps 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-psr 19356
This theorem is referenced by:  psrring  19411  psr1  19412
  Copyright terms: Public domain W3C validator