MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatf1 Structured version   Visualization version   GIF version

Theorem scmatf1 20337
Description: There is a 1-1 function from a ring to any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 25-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
scmatrhmval.c 𝐶 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatf1 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾1-1𝐶)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, 1   𝑥,   𝑥,𝐶   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem scmatf1
Dummy variables 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatrhmval.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatrhmval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatrhmval.o . . . 4 1 = (1r𝐴)
4 scmatrhmval.t . . . 4 = ( ·𝑠𝐴)
5 scmatrhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
6 scmatrhmval.c . . . 4 𝐶 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatf 20335 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
873adant2 1080 . 2 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
9 simpr 477 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
10 simpl 473 . . . . . . 7 ((𝑦𝐾𝑧𝐾) → 𝑦𝐾)
111, 2, 3, 4, 5scmatrhmval 20333 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → (𝐹𝑦) = (𝑦 1 ))
129, 10, 11syl2an 494 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑦) = (𝑦 1 ))
13 simpr 477 . . . . . . 7 ((𝑦𝐾𝑧𝐾) → 𝑧𝐾)
141, 2, 3, 4, 5scmatrhmval 20333 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑧𝐾) → (𝐹𝑧) = (𝑧 1 ))
159, 13, 14syl2an 494 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑧) = (𝑧 1 ))
1612, 15eqeq12d 2637 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 1 ) = (𝑧 1 )))
17163adantl2 1218 . . . 4 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 1 ) = (𝑧 1 )))
182matring 20249 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
19 eqid 2622 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
2019, 3ringidcl 18568 . . . . . . . . . . 11 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
2118, 20syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
2221, 10anim12ci 591 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦𝐾1 ∈ (Base‘𝐴)))
231, 2, 19, 4matvscl 20237 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾1 ∈ (Base‘𝐴))) → (𝑦 1 ) ∈ (Base‘𝐴))
2422, 23syldan 487 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦 1 ) ∈ (Base‘𝐴))
2521, 13anim12ci 591 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑧𝐾1 ∈ (Base‘𝐴)))
261, 2, 19, 4matvscl 20237 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑧𝐾1 ∈ (Base‘𝐴))) → (𝑧 1 ) ∈ (Base‘𝐴))
2725, 26syldan 487 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑧 1 ) ∈ (Base‘𝐴))
2824, 27jca 554 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) ∈ (Base‘𝐴) ∧ (𝑧 1 ) ∈ (Base‘𝐴)))
29283adantl2 1218 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) ∈ (Base‘𝐴) ∧ (𝑧 1 ) ∈ (Base‘𝐴)))
302, 19eqmat 20230 . . . . . 6 (((𝑦 1 ) ∈ (Base‘𝐴) ∧ (𝑧 1 ) ∈ (Base‘𝐴)) → ((𝑦 1 ) = (𝑧 1 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗)))
3129, 30syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) = (𝑧 1 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗)))
32 difsnid 4341 . . . . . . . . . . . 12 (𝑖𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁)
3332eqcomd 2628 . . . . . . . . . . 11 (𝑖𝑁𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
3433adantl 482 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
3534raleqdv 3144 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ ∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗)))
36 oveq2 6658 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑖(𝑦 1 )𝑗) = (𝑖(𝑦 1 )𝑖))
37 oveq2 6658 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑖(𝑧 1 )𝑗) = (𝑖(𝑧 1 )𝑖))
3836, 37eqeq12d 2637 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖)))
3938ralunsn 4422 . . . . . . . . . 10 (𝑖𝑁 → (∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖))))
4039adantl 482 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (∀𝑗 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖))))
4110anim2i 593 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐾))
42 df-3an 1039 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐾))
4341, 42sylibr 224 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐾))
44 id 22 . . . . . . . . . . . . . 14 (𝑖𝑁𝑖𝑁)
4544, 44jca 554 . . . . . . . . . . . . 13 (𝑖𝑁 → (𝑖𝑁𝑖𝑁))
46 eqid 2622 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
472, 1, 46, 3, 4scmatscmide 20313 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐾) ∧ (𝑖𝑁𝑖𝑁)) → (𝑖(𝑦 1 )𝑖) = if(𝑖 = 𝑖, 𝑦, (0g𝑅)))
4843, 45, 47syl2an 494 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑦 1 )𝑖) = if(𝑖 = 𝑖, 𝑦, (0g𝑅)))
49 eqid 2622 . . . . . . . . . . . . 13 𝑖 = 𝑖
5049iftruei 4093 . . . . . . . . . . . 12 if(𝑖 = 𝑖, 𝑦, (0g𝑅)) = 𝑦
5148, 50syl6eq 2672 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑦 1 )𝑖) = 𝑦)
5213anim2i 593 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑧𝐾))
53 df-3an 1039 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑧𝐾))
5452, 53sylibr 224 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧𝐾))
552, 1, 46, 3, 4scmatscmide 20313 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑧𝐾) ∧ (𝑖𝑁𝑖𝑁)) → (𝑖(𝑧 1 )𝑖) = if(𝑖 = 𝑖, 𝑧, (0g𝑅)))
5654, 45, 55syl2an 494 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑧 1 )𝑖) = if(𝑖 = 𝑖, 𝑧, (0g𝑅)))
5749iftruei 4093 . . . . . . . . . . . 12 if(𝑖 = 𝑖, 𝑧, (0g𝑅)) = 𝑧
5856, 57syl6eq 2672 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (𝑖(𝑧 1 )𝑖) = 𝑧)
5951, 58eqeq12d 2637 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → ((𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖) ↔ 𝑦 = 𝑧))
6059anbi2d 740 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → ((∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ (𝑖(𝑦 1 )𝑖) = (𝑖(𝑧 1 )𝑖)) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
6135, 40, 603bitrd 294 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
6261ralbidva 2985 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ ∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
63623adantl2 1218 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ↔ ∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧)))
64 r19.26 3064 . . . . . . . 8 (∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧) ↔ (∀𝑖𝑁𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ ∀𝑖𝑁 𝑦 = 𝑧))
65 rspn0 3934 . . . . . . . . . . . 12 (𝑁 ≠ ∅ → (∀𝑖𝑁 𝑦 = 𝑧𝑦 = 𝑧))
66653ad2ant2 1083 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (∀𝑖𝑁 𝑦 = 𝑧𝑦 = 𝑧))
6766adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁 𝑦 = 𝑧𝑦 = 𝑧))
6867com12 32 . . . . . . . . 9 (∀𝑖𝑁 𝑦 = 𝑧 → (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑦 = 𝑧))
6968adantl 482 . . . . . . . 8 ((∀𝑖𝑁𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ ∀𝑖𝑁 𝑦 = 𝑧) → (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑦 = 𝑧))
7064, 69sylbi 207 . . . . . . 7 (∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧) → (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑦 = 𝑧))
7170com12 32 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁 (∀𝑗 ∈ (𝑁 ∖ {𝑖})(𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧))
7263, 71sylbid 230 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑦 1 )𝑗) = (𝑖(𝑧 1 )𝑗) → 𝑦 = 𝑧))
7331, 72sylbid 230 . . . 4 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 ) = (𝑧 1 ) → 𝑦 = 𝑧))
7417, 73sylbid 230 . . 3 (((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
7574ralrimivva 2971 . 2 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → ∀𝑦𝐾𝑧𝐾 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
76 dff13 6512 . 2 (𝐹:𝐾1-1𝐶 ↔ (𝐹:𝐾𝐶 ∧ ∀𝑦𝐾𝑧𝐾 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
778, 75, 76sylanbrc 698 1 ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cdif 3571  cun 3572  c0 3915  ifcif 4086  {csn 4177  cmpt 4729  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857   ·𝑠 cvsca 15945  0gc0g 16100  1rcur 18501  Ringcrg 18547   Mat cmat 20213   ScMat cscmat 20295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-scmat 20297
This theorem is referenced by:  scmatf1o  20338
  Copyright terms: Public domain W3C validator