Proof of Theorem uc1pmon1p
| Step | Hyp | Ref
| Expression |
| 1 | | uc1pmon1p.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
| 2 | 1 | ply1ring 19618 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 3 | 2 | adantr 481 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → 𝑃 ∈ Ring) |
| 4 | | uc1pmon1p.a |
. . . . . 6
⊢ 𝐴 = (algSc‘𝑃) |
| 5 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 6 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 7 | 1, 4, 5, 6 | ply1sclf 19655 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶(Base‘𝑃)) |
| 8 | 7 | adantr 481 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → 𝐴:(Base‘𝑅)⟶(Base‘𝑃)) |
| 9 | | uc1pmon1p.d |
. . . . . 6
⊢ 𝐷 = ( deg1
‘𝑅) |
| 10 | | eqid 2622 |
. . . . . 6
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 11 | | uc1pmon1p.c |
. . . . . 6
⊢ 𝐶 =
(Unic1p‘𝑅) |
| 12 | 9, 10, 11 | uc1pldg 23908 |
. . . . 5
⊢ (𝑋 ∈ 𝐶 → ((coe1‘𝑋)‘(𝐷‘𝑋)) ∈ (Unit‘𝑅)) |
| 13 | | uc1pmon1p.i |
. . . . . 6
⊢ 𝐼 = (invr‘𝑅) |
| 14 | 10, 13, 5 | ringinvcl 18676 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝑋)‘(𝐷‘𝑋)) ∈ (Unit‘𝑅)) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Base‘𝑅)) |
| 15 | 12, 14 | sylan2 491 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Base‘𝑅)) |
| 16 | 8, 15 | ffvelrnd 6360 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) ∈ (Base‘𝑃)) |
| 17 | 1, 6, 11 | uc1pcl 23903 |
. . . 4
⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (Base‘𝑃)) |
| 18 | 17 | adantl 482 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘𝑃)) |
| 19 | | uc1pmon1p.t |
. . . 4
⊢ · =
(.r‘𝑃) |
| 20 | 6, 19 | ringcl 18561 |
. . 3
⊢ ((𝑃 ∈ Ring ∧ (𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) ∈ (Base‘𝑃) ∧ 𝑋 ∈ (Base‘𝑃)) → ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ (Base‘𝑃)) |
| 21 | 3, 16, 18, 20 | syl3anc 1326 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ (Base‘𝑃)) |
| 22 | | simpl 473 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → 𝑅 ∈ Ring) |
| 23 | | eqid 2622 |
. . . . . . . 8
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
| 24 | 23, 10 | unitrrg 19293 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
| 25 | 24 | adantr 481 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
| 26 | 10, 13 | unitinvcl 18674 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝑋)‘(𝐷‘𝑋)) ∈ (Unit‘𝑅)) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Unit‘𝑅)) |
| 27 | 12, 26 | sylan2 491 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Unit‘𝑅)) |
| 28 | 25, 27 | sseldd 3604 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (RLReg‘𝑅)) |
| 29 | 9, 1, 23, 6, 19, 4 | deg1mul3 23875 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (RLReg‘𝑅) ∧ 𝑋 ∈ (Base‘𝑃)) → (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) = (𝐷‘𝑋)) |
| 30 | 22, 28, 18, 29 | syl3anc 1326 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) = (𝐷‘𝑋)) |
| 31 | 9, 11 | uc1pdeg 23907 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐷‘𝑋) ∈
ℕ0) |
| 32 | 30, 31 | eqeltrd 2701 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) ∈
ℕ0) |
| 33 | | eqid 2622 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 34 | 9, 1, 33, 6 | deg1nn0clb 23850 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ (Base‘𝑃)) → (((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ≠ (0g‘𝑃) ↔ (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) ∈
ℕ0)) |
| 35 | 21, 34 | syldan 487 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ≠ (0g‘𝑃) ↔ (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) ∈
ℕ0)) |
| 36 | 32, 35 | mpbird 247 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ≠ (0g‘𝑃)) |
| 37 | 30 | fveq2d 6195 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))) = ((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘𝑋))) |
| 38 | | eqid 2622 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 39 | 1, 6, 5, 4, 19, 38 | coe1sclmul 19652 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑃)) → (coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) = ((ℕ0 × {(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘𝑓
(.r‘𝑅)(coe1‘𝑋))) |
| 40 | 22, 15, 18, 39 | syl3anc 1326 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) = ((ℕ0 × {(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘𝑓
(.r‘𝑅)(coe1‘𝑋))) |
| 41 | 40 | fveq1d 6193 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘𝑋)) = (((ℕ0 × {(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘𝑓
(.r‘𝑅)(coe1‘𝑋))‘(𝐷‘𝑋))) |
| 42 | | nn0ex 11298 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 43 | 42 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ℕ0 ∈
V) |
| 44 | | fvexd 6203 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ V) |
| 45 | | eqid 2622 |
. . . . . . . 8
⊢
(coe1‘𝑋) = (coe1‘𝑋) |
| 46 | 45, 6, 1, 5 | coe1f 19581 |
. . . . . . 7
⊢ (𝑋 ∈ (Base‘𝑃) →
(coe1‘𝑋):ℕ0⟶(Base‘𝑅)) |
| 47 | | ffn 6045 |
. . . . . . 7
⊢
((coe1‘𝑋):ℕ0⟶(Base‘𝑅) →
(coe1‘𝑋) Fn
ℕ0) |
| 48 | 18, 46, 47 | 3syl 18 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (coe1‘𝑋) Fn
ℕ0) |
| 49 | | eqidd 2623 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) ∧ (𝐷‘𝑋) ∈ ℕ0) →
((coe1‘𝑋)‘(𝐷‘𝑋)) = ((coe1‘𝑋)‘(𝐷‘𝑋))) |
| 50 | 43, 44, 48, 49 | ofc1 6920 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) ∧ (𝐷‘𝑋) ∈ ℕ0) →
(((ℕ0 × {(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘𝑓
(.r‘𝑅)(coe1‘𝑋))‘(𝐷‘𝑋)) = ((𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))(.r‘𝑅)((coe1‘𝑋)‘(𝐷‘𝑋)))) |
| 51 | 31, 50 | mpdan 702 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (((ℕ0 ×
{(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘𝑓
(.r‘𝑅)(coe1‘𝑋))‘(𝐷‘𝑋)) = ((𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))(.r‘𝑅)((coe1‘𝑋)‘(𝐷‘𝑋)))) |
| 52 | | eqid 2622 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 53 | 10, 13, 38, 52 | unitlinv 18677 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝑋)‘(𝐷‘𝑋)) ∈ (Unit‘𝑅)) → ((𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))(.r‘𝑅)((coe1‘𝑋)‘(𝐷‘𝑋))) = (1r‘𝑅)) |
| 54 | 12, 53 | sylan2 491 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))(.r‘𝑅)((coe1‘𝑋)‘(𝐷‘𝑋))) = (1r‘𝑅)) |
| 55 | 51, 54 | eqtrd 2656 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (((ℕ0 ×
{(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘𝑓
(.r‘𝑅)(coe1‘𝑋))‘(𝐷‘𝑋)) = (1r‘𝑅)) |
| 56 | 37, 41, 55 | 3eqtrd 2660 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))) = (1r‘𝑅)) |
| 57 | | uc1pmon1p.m |
. . 3
⊢ 𝑀 =
(Monic1p‘𝑅) |
| 58 | 1, 6, 33, 9, 57, 52 | ismon1p 23902 |
. 2
⊢ (((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ 𝑀 ↔ (((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ (Base‘𝑃) ∧ ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ≠ (0g‘𝑃) ∧
((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))) = (1r‘𝑅))) |
| 59 | 21, 36, 56, 58 | syl3anbrc 1246 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ 𝑀) |