MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioovol Structured version   Visualization version   GIF version

Theorem uniioovol 23347
Description: A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 23322.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniioovol (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniioovol
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniioombl.1 . . 3 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 ssid 3624 . . 3 ran ((,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐹)
3 uniioombl.3 . . . 4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
43ovollb 23247 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐹)) → (vol*‘ ran ((,) ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
51, 2, 4sylancl 694 . 2 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
61adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
7 elfznn 12370 . . . . . . . . . . 11 (𝑥 ∈ (1...𝑛) → 𝑥 ∈ ℕ)
8 eqid 2622 . . . . . . . . . . . 12 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
98ovolfsval 23239 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
106, 7, 9syl2an 494 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝐹)‘𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
11 fvco3 6275 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
126, 7, 11syl2an 494 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
13 inss2 3834 . . . . . . . . . . . . . . . . . 18 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
14 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
156, 7, 14syl2an 494 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
1613, 15sseldi 3601 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (𝐹𝑥) ∈ (ℝ × ℝ))
17 1st2nd2 7205 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1918fveq2d 6195 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
20 df-ov 6653 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2119, 20syl6eqr 2674 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((,)‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
2212, 21eqtrd 2656 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
23 ioombl 23333 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∈ dom vol
2422, 23syl6eqel 2709 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
25 mblvol 23298 . . . . . . . . . . . 12 ((((,) ∘ 𝐹)‘𝑥) ∈ dom vol → (vol‘(((,) ∘ 𝐹)‘𝑥)) = (vol*‘(((,) ∘ 𝐹)‘𝑥)))
2624, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) = (vol*‘(((,) ∘ 𝐹)‘𝑥)))
2722fveq2d 6195 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol*‘(((,) ∘ 𝐹)‘𝑥)) = (vol*‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))))
28 ovolfcl 23235 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
296, 7, 28syl2an 494 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
30 ovolioo 23336 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (vol*‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
3129, 30syl 17 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol*‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
3226, 27, 313eqtrd 2660 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
3310, 32eqtr4d 2659 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝐹)‘𝑥) = (vol‘(((,) ∘ 𝐹)‘𝑥)))
34 simpr 477 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
35 nnuz 11723 . . . . . . . . . 10 ℕ = (ℤ‘1)
3634, 35syl6eleq 2711 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
3729simp2d 1074 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (2nd ‘(𝐹𝑥)) ∈ ℝ)
3829simp1d 1073 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (1st ‘(𝐹𝑥)) ∈ ℝ)
3937, 38resubcld 10458 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ∈ ℝ)
4032, 39eqeltrd 2701 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ)
4140recnd 10068 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℂ)
4233, 36, 41fsumser 14461 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑛))
433fveq1i 6192 . . . . . . . 8 (𝑆𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑛)
4442, 43syl6reqr 2675 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)))
45 fzfid 12772 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
4624, 40jca 554 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((((,) ∘ 𝐹)‘𝑥) ∈ dom vol ∧ (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ))
4746ralrimiva 2966 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑥 ∈ (1...𝑛)((((,) ∘ 𝐹)‘𝑥) ∈ dom vol ∧ (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ))
487ssriv 3607 . . . . . . . . 9 (1...𝑛) ⊆ ℕ
49 uniioombl.2 . . . . . . . . . . 11 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
501, 11sylan 488 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
5150disjeq2dv 4625 . . . . . . . . . . 11 (𝜑 → (Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ↔ Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥))))
5249, 51mpbird 247 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
5352adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
54 disjss1 4626 . . . . . . . . 9 ((1...𝑛) ⊆ ℕ → (Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) → Disj 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
5548, 53, 54mpsyl 68 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → Disj 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥))
56 volfiniun 23315 . . . . . . . 8 (((1...𝑛) ∈ Fin ∧ ∀𝑥 ∈ (1...𝑛)((((,) ∘ 𝐹)‘𝑥) ∈ dom vol ∧ (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ) ∧ Disj 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)))
5745, 47, 55, 56syl3anc 1326 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)))
5824ralrimiva 2966 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∀𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
59 finiunmbl 23312 . . . . . . . . 9 (((1...𝑛) ∈ Fin ∧ ∀𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
6045, 58, 59syl2anc 693 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
61 mblvol 23298 . . . . . . . 8 ( 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
6260, 61syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
6344, 57, 623eqtr2d 2662 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
64 iunss1 4532 . . . . . . . . 9 ((1...𝑛) ⊆ ℕ → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
6548, 64mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
66 ioof 12271 . . . . . . . . . . 11 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
67 rexpssxrxp 10084 . . . . . . . . . . . . 13 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
6813, 67sstri 3612 . . . . . . . . . . . 12 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
69 fss 6056 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
701, 68, 69sylancl 694 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
71 fco 6058 . . . . . . . . . . 11 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
7266, 70, 71sylancr 695 . . . . . . . . . 10 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
7372adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
74 ffn 6045 . . . . . . . . 9 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
75 fniunfv 6505 . . . . . . . . 9 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
7673, 74, 753syl 18 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
7765, 76sseqtrd 3641 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ ran ((,) ∘ 𝐹))
78 frn 6053 . . . . . . . . . 10 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
7972, 78syl 17 . . . . . . . . 9 (𝜑 → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
80 sspwuni 4611 . . . . . . . . 9 (ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ((,) ∘ 𝐹) ⊆ ℝ)
8179, 80sylib 208 . . . . . . . 8 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
8281adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ran ((,) ∘ 𝐹) ⊆ ℝ)
83 ovolss 23253 . . . . . . 7 (( 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ ran ((,) ∘ 𝐹) ∧ ran ((,) ∘ 𝐹) ⊆ ℝ) → (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
8477, 82, 83syl2anc 693 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
8563, 84eqbrtrd 4675 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
8685ralrimiva 2966 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
878, 3ovolsf 23241 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
881, 87syl 17 . . . . 5 (𝜑𝑆:ℕ⟶(0[,)+∞))
89 ffn 6045 . . . . 5 (𝑆:ℕ⟶(0[,)+∞) → 𝑆 Fn ℕ)
90 breq1 4656 . . . . . 6 (𝑦 = (𝑆𝑛) → (𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹))))
9190ralrn 6362 . . . . 5 (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹))))
9288, 89, 913syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹))))
9386, 92mpbird 247 . . 3 (𝜑 → ∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)))
94 frn 6053 . . . . . 6 (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞))
951, 87, 943syl 18 . . . . 5 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
96 icossxr 12258 . . . . 5 (0[,)+∞) ⊆ ℝ*
9795, 96syl6ss 3615 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ*)
98 ovolcl 23246 . . . . 5 ( ran ((,) ∘ 𝐹) ⊆ ℝ → (vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ*)
9981, 98syl 17 . . . 4 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ*)
100 supxrleub 12156 . . . 4 ((ran 𝑆 ⊆ ℝ* ∧ (vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹))))
10197, 99, 100syl2anc 693 . . 3 (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹))))
10293, 101mpbird 247 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
103 supxrcl 12145 . . . 4 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
10497, 103syl 17 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
105 xrletri3 11985 . . 3 (((vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ* ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) → ((vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ) ↔ ((vol*‘ ran ((,) ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)))))
10699, 104, 105syl2anc 693 . 2 (𝜑 → ((vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ) ↔ ((vol*‘ ran ((,) ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)))))
1075, 102, 106mpbir2and 957 1 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cin 3573  wss 3574  𝒫 cpw 4158  cop 4183   cuni 4436   ciun 4520  Disj wdisj 4620   class class class wbr 4653   × cxp 5112  dom cdm 5114  ran crn 5115  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Fincfn 7955  supcsup 8346  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cn 11020  cuz 11687  (,)cioo 12175  [,)cico 12177  ...cfz 12326  seqcseq 12801  abscabs 13974  Σcsu 14416  vol*covol 23231  volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  uniiccvol  23348  uniioombllem2  23351
  Copyright terms: Public domain W3C validator