Proof of Theorem ovolioo
| Step | Hyp | Ref
| Expression |
| 1 | | ioombl 23333 |
. . 3
⊢ (𝐴(,)𝐵) ∈ dom vol |
| 2 | | mblvol 23298 |
. . 3
⊢ ((𝐴(,)𝐵) ∈ dom vol → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵))) |
| 3 | 1, 2 | ax-mp 5 |
. 2
⊢
(vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵)) |
| 4 | | iccmbl 23334 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) |
| 5 | | mblvol 23298 |
. . . . 5
⊢ ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))) |
| 6 | 4, 5 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))) |
| 7 | 6 | 3adant3 1081 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))) |
| 8 | 1 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴(,)𝐵) ∈ dom vol) |
| 9 | | prssi 4353 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ) |
| 10 | 9 | 3adant3 1081 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → {𝐴, 𝐵} ⊆ ℝ) |
| 11 | | prfi 8235 |
. . . . . . 7
⊢ {𝐴, 𝐵} ∈ Fin |
| 12 | | ovolfi 23262 |
. . . . . . 7
⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0) |
| 13 | 11, 10, 12 | sylancr 695 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘{𝐴, 𝐵}) = 0) |
| 14 | | nulmbl 23303 |
. . . . . 6
⊢ (({𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → {𝐴, 𝐵} ∈ dom vol) |
| 15 | 10, 13, 14 | syl2anc 693 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → {𝐴, 𝐵} ∈ dom vol) |
| 16 | | df-pr 4180 |
. . . . . . . 8
⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| 17 | 16 | ineq2i 3811 |
. . . . . . 7
⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵})) |
| 18 | | indi 3873 |
. . . . . . 7
⊢ ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵})) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) |
| 19 | 17, 18 | eqtri 2644 |
. . . . . 6
⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) |
| 20 | | simp1 1061 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
| 21 | 20 | ltnrd 10171 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ¬ 𝐴 < 𝐴) |
| 22 | | eliooord 12233 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐴 ∧ 𝐴 < 𝐵)) |
| 23 | 22 | simpld 475 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐴) |
| 24 | 21, 23 | nsyl 135 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ¬ 𝐴 ∈ (𝐴(,)𝐵)) |
| 25 | | disjsn 4246 |
. . . . . . . . 9
⊢ (((𝐴(,)𝐵) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝐵)) |
| 26 | 24, 25 | sylibr 224 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∩ {𝐴}) = ∅) |
| 27 | | simp2 1062 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
| 28 | 27 | ltnrd 10171 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ¬ 𝐵 < 𝐵) |
| 29 | | eliooord 12233 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐵 ∧ 𝐵 < 𝐵)) |
| 30 | 29 | simprd 479 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (𝐴(,)𝐵) → 𝐵 < 𝐵) |
| 31 | 28, 30 | nsyl 135 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ¬ 𝐵 ∈ (𝐴(,)𝐵)) |
| 32 | | disjsn 4246 |
. . . . . . . . 9
⊢ (((𝐴(,)𝐵) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐴(,)𝐵)) |
| 33 | 31, 32 | sylibr 224 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∩ {𝐵}) = ∅) |
| 34 | 26, 33 | uneq12d 3768 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = (∅ ∪
∅)) |
| 35 | | un0 3967 |
. . . . . . 7
⊢ (∅
∪ ∅) = ∅ |
| 36 | 34, 35 | syl6eq 2672 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = ∅) |
| 37 | 19, 36 | syl5eq 2668 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅) |
| 38 | | ioossicc 12259 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 39 | 38 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 40 | | iccssre 12255 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| 41 | 40 | 3adant3 1081 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) ⊆ ℝ) |
| 42 | | ovolicc 23291 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
| 43 | 27, 20 | resubcld 10458 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ) |
| 44 | 42, 43 | eqeltrd 2701 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) ∈ ℝ) |
| 45 | | ovolsscl 23254 |
. . . . . . 7
⊢ (((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (vol*‘(𝐴[,]𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
| 46 | 39, 41, 44, 45 | syl3anc 1326 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
| 47 | 3, 46 | syl5eqel 2705 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
| 48 | | mblvol 23298 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} ∈ dom vol → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵})) |
| 49 | 15, 48 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵})) |
| 50 | 49, 13 | eqtrd 2656 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘{𝐴, 𝐵}) = 0) |
| 51 | | 0re 10040 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 52 | 50, 51 | syl6eqel 2709 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘{𝐴, 𝐵}) ∈ ℝ) |
| 53 | | volun 23313 |
. . . . 5
⊢ ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐴, 𝐵} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐴, 𝐵}) ∈ ℝ)) →
(vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵}))) |
| 54 | 8, 15, 37, 47, 52, 53 | syl32anc 1334 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵}))) |
| 55 | | rexr 10085 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
| 56 | | rexr 10085 |
. . . . . 6
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
| 57 | | id 22 |
. . . . . 6
⊢ (𝐴 ≤ 𝐵 → 𝐴 ≤ 𝐵) |
| 58 | | prunioo 12301 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) |
| 59 | 55, 56, 57, 58 | syl3an 1368 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) |
| 60 | 59 | fveq2d 6195 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = (vol‘(𝐴[,]𝐵))) |
| 61 | 50 | oveq2d 6666 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + 0)) |
| 62 | 47 | recnd 10068 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℂ) |
| 63 | 62 | addid1d 10236 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((vol‘(𝐴(,)𝐵)) + 0) = (vol‘(𝐴(,)𝐵))) |
| 64 | 61, 63 | eqtrd 2656 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = (vol‘(𝐴(,)𝐵))) |
| 65 | 54, 60, 64 | 3eqtr3d 2664 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴(,)𝐵))) |
| 66 | 7, 65, 42 | 3eqtr3d 2664 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 67 | 3, 66 | syl5eqr 2670 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |